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Abstract. Measured optic flow fields are always somewhat erroneous
and/or ambiguous. First, we cannot compute the actual spatial or tem-
poral derivatives, but only their estimates, which are corrupted by image
noise. Second, optic flow is intrinsically an image-based measurement of
the relative motion between the observer and the environment, but we
are interested in estimating the actual motion field. However, real-world
motion field patterns contain intrinsic statistic properties that allow to
define Gestalts as groups of pixels sharing the same motion property. By
checking the presence of such Gestalts in optic flow fields we can make
their interpretation more confident. We propose an optimal recurrent
filter capable of evidencing motion Gestalts corresponding to 1st-order
spatial derivatives or elementary flow components (EFCs). A Gestalt
emerges from a noisy flow as a solution of an iterative process of spa-
tially interacting nodes that correlates the statistics of the visual context
with that of a structural model of the Gestalt.

1 Local motion Gestalts

Velocity gradients provide important cues about the 3-D layout of the visual
scene. Formally, they can be described as linear deformations by a 2×2 velocity
gradient tensor

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (1)

Hence, if x = (x, y) is a point in a spatial image domain, the linear proper-
ties of a motion field v(x, y) = (vx, vy) around the point x0 = (x0, y0) can be
characterized by a Taylor expansion, truncated at the first order:

v = v̄ + T̄x (2)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By breaking down the tensor in

its dyadic components, the motion field can be locally described through 2-D
maps representing cardinal EFCs:
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Fig. 1. Basic gradient type Gestalts considered. In stretching-type components (a,c)
velocity varies along the direction of motion; in shearing-type components (b,d) velocity
gradient is oriented perpendicularly to the direction of motion. Non-opponent patterns
are obtained from the opponent ones by a linear combination of pure tranlations and
cardinal deformations: di

j + mα
i, where m is a proper positive scalar constant.

where α
x : (x, y) 7→ (1, 0), αy : (x, y) 7→ (0, 1) are pure translations and

d
x
x : (x, y) 7→ (x, 0), dx

y : (x, y) 7→ (y, 0), dy
x : (x, y) 7→ (0, x), dy

y : (x, y) 7→ (0, y)
represent cardinal deformations, basis of the linear deformation space.

It is worthy to note that the components of pure translations could be incor-
porated in the corresponding deformation components, thus obtaining general-
ized deformation components in which motion boundaries are shifted or totally
absent. Although this does not affect the significance of the Taylor expansion
in Eq. 3, the so-modified elementary components, present very different struc-
tural properties. Since a template-based approach cannot be used to extract
single components, but only to perform pattern matching operations, the lin-
ear decomposition of the motion field has significance only for the definition
of a proper representation space. Specific templates would be designed to opti-
mally sample that representation space. In this work, we consider two different
classes of deformation templates (opponent and non-opponent), each character-
ized by two gradient types (stretching and shearing), see Fig. 1. Due to their
ability to detect the presence and the orientation of velocity gradients and ki-
netic boundaries, such cardinal EFCs and proper combinations of them resemble
the characteristics of the cell in the Middle Temporal visual area (MT) [1] [2].
It is straightforward to derive that these MT-like components are well suited
to provide the building blocks for the more complex receptive field properties
encountered in the Medial Superior Temporal visual area (MST) [3] [4]:
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where E = (T̄11 + T̄22)/2, ω = (T̄12 − T̄21)/2, S1 = (T̄11 − T̄22)/2, S2 =
(T̄12 + T̄21)/2 are the divergence, the curl and the two components of shear
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Fig. 2. (a) Two deformation subspaces obtained by the set of cardinal EFCs with
different values of the parameter m. The quadrants of each subspace characterize an
elementary deformation, as evidenced in (b) for expansion (E > 0), horizontal positive
shear (S1 > 0), oblique positive shear (S2), and counterclockwise rotation (ω > 0).

deformation, respectively (cf. [5]). These mixed EFCs constitute, together with
the pure translations, an equivalent representation basis for the linear properties
of the velocity field (see Fig. 2). Yet, they are rather complex since not only the
speed, but also the direction of feature motion varies as a function of spatial
position. Rigid body motion often generates simpler flow fields characterized by
unidirectional patterns, as the cardinal EFCs considered in this study.

2 The context sensitive filter

The problem of evidencing the presence of a certain complex feature in the optic
flow on the basis of both local and contextual information, can be posed as an
adaptive filtering problem (estimation), where local information act as the input
measurements and the context acts as the reference signal, e.g., representing
a specific motion Gestalt. In the following, we propose a solution in the form
of a generalized Kalman filter (KF) [6]. Due to its recurrent formulation, KF
appears particularly promising to design context-sensitive filters (CSFs) based
on recurrent cortical-like interconnection architectures.

Let us assume the optic flow ṽ(i, j) as the corrupted measure of the actual ve-
locity field v(i, j). The difference between these two variables can be represented



as a constant noise term ε(i, j):

ṽ = v + ε . (4)

Due to the intrinsic noise of the nervous system, the neural representation of the
optic flow v(i, j)[k] can be expressed by a measurement equation:

v[k] = ṽ + n1[k] = v + ε+ n1[k] (5)

where n1 represents the uncertainty associated with a neuron’s response. The
Gestalt is formalized through a process equation:

v[k] = Φv[k − 1] + n2[k − 1] + s (6)

with limk→∞ v[k] = v if n2 = 0. The state transition matrix Φ is de facto a
spatial interconnection matrix that implements a specific Gestalt rule (i.e., a
specific EFC); s is a constant driving input; n2 represents the process uncer-
tainty. The space spanned by the observations v[1], v[2],. . . , v[k− 1] is denoted
by Vk−1 and represents the internal noisy representation of the optic flow. We
assume that both n1 and n2 are independent, zero-mean and normally dis-
tributed: n1[k] = N(0,Λ1) and n2[k] = N(0,Λ2). The index k takes explicitly
into account the time necessary for spatial recurrence. More precisely, Φ models
space-invariant nearest-neighbor interactions within a finite region Ω in the (i, j)
plane that is bounded by a piece-wise smooth contour. Interactions occur, sep-
arately for each component of the velocity vectors (vx, vy), through anisotropic
interconnection schemes:

vx/y(i, j)[k] = w
x/y
N vx/y(i, j − 1)[k − 1] + w

x/y
S vx/y(i, j + 1)[k − 1] + sx/y(i, j)

+ w
x/y
W vx/y(i− 1, j)[k − 1] + w

x/y
E vx/y(i+ 1, j)[k − 1] + n

x/y
1

(i, j)[k − 1]

where (sx, sy) is a steady additional control input, which models the bound-
ary conditions. The process equation has a structuring effect constrained by
the boundary conditions that yields to structural equilibrium configurations,
characterized by specific first-order EFCs. The resulting pattern depends on
the anisotropy of the interaction scheme and on the boundary conditions. By
example, considering, for the sake of simplicity, a rectangular domain Ω =
[−L,L]× [−L,L], the cardinal EFC dx

x can be obtained through:

wx
N = wx

S = 0 wy
N = wy

S = 0
wx

W = wx
E = 0.5 wy

W = wy
E = 0

sx(i, j) =







−λ if i = −L
λ if i = L
0 otherwise

sy(i, j) = 0

where the boundary value λ controls the gradient slope. In a similar way we can
obtain the other components.

Given Eqs. (5) and (6), we may write the optimal filter for optic flow Gestalts.
The filter allows to detect, in noisy flows, intrinsic correlations, as those related
to EFCs, by checking, through spatial recurrent interactions, that the spatial
context of the observed velocities conform to the Gestalt rules, embedded in Φ.



To understand how the CSF works, we define the a priori state estimate at step
k given knowledge of the process at step k − 1, v̂[k|Vk−1], and the a posteriori

state estimate at step k given the measurement at the step k, v̂[k|Vk]. The aim
of the CSF is to compute an a posteriori estimate by using an a priori estimate
and a weighted difference between the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] +G[k] (v[k]− v̂[k|Vk−1]) (7)

The difference term in Eq. (7) is the innovation α[k] that takes into account
the discrepancy between the current measurement v[k] and the predicted mea-
surement v̂[k|Vk−1]. The matrix G[k] is the Kalman gain that minimizes the a
posteriori error covariance:

K[k] = E
{

(v[k]− v̂[k|Vk])(v[k]− v̂[k|Vk])
T
}

. (8)

Eqs. 7 and 8 represent the mean and covariance expressions of the CSF output.
The covariance matrix K[k] provides us only information about the proper-

ties of convergence of the KF and not whether it converges to the correct values.
Hence, we have to check the consistency between the innovation and the model
(i.e., between observed and predicted values) in statistical terms. A measure of
the reliability of the KF output is the Normalized Innovation Squared (NIS):

NISk = αT [k] Σ−1[k] α[k] (9)

where Σ is the covariance of the innovation. It is possible to exploit Eq. (9) to
detect if the current observations are an instance of the model embedded in the
KF [7].

3 Results

Fig. 3 shows the responses of the CSF in the deformation subspaces for two
different input flows. Twentyfour EFC models have been used to span the de-
formation subspaces shown in Fig. 2a. The grey level in the CSF output maps
represents the probability of a given Gestalt according to the NIS criterium:
lightest grey indicates the most problable Gestalt. Besides Gestalt detection,
context information reduces the uncertainty on the measured velocities, as evi-
denced, for the circled vectors, by the Gaussian densities, plotted over the space
of image velocity.

4 Conclusions

Given motion information represented by an optic flow field, we specified a CSF
to recognize if a group of velocity vectors belong to a specific pattern, on the
basis of their relationships in a spatial neighborhood. Casting the problem as a
KF, the detection occurs through a spatial recurrent filter that checks the con-
sistency between the spatial structural properties of the input flow field pattern
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Fig. 3. Example of Gestalt detection in noisy flows.

and a structural rule expressed by the process equation of the KF. The CSF be-
haves as a template model. Yet, its specificity lies in the fact that the template
character is not built by highly specific feed-forward connections, but emerges by
stereotyped recurrent interactions (cf. the process equation). Furthermore, the
approach can be straightforwardly extended to consider adaptive cross-modal
templates (e.g, motion and stereo). By proper specification of the matrix Φ, the
process equation can, indeed, potentially model any type of multimodal spatio-
temporal relationships (i.e., multimodal spatio-temporal context).
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