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Abstract: We test a biologically motivated filtering method [9] for noise decreasing in optical flow
fields. We use the task of heading detection from optic flow as a way to estimate improvements of
flow fields generated by a standard algorithm. The image sequences which we use for the testing are
directly calculated from three dimensional real world data assuming a given self motion. Thus we
retain the control about the exact heading and rotation and have ground truth. Not surprisingly,
due to the noise and the aperture problem the results for the raw flows are often incorrect. In
contrast the filtered flows allow correct heading detection.

1 Introduction

Optical flow fields generated by image analysis applied to image sequences are usually very noisy.
Such noisy, low quality flow fields are what computer vision scientists and engineers have to deal
with when developing vision based driver assistance systems or autonomous robots. Such systems
should be capable to estimate self motion, i.e. the direction of motion (heading) and the rotation of
a camera moving through a static scene. Biological systems are able to estimate self motion rather
exact, but assuming that biological vision systems have no superior detectors they can not be better
than the mathematics used in technical systems. Probably, on the input stage, biological systems
face the same problematic optic flows as the computer vision scientist (or the robot prototype)
does. Somehow, however, the brain has developed methods to remedy the shortcomings of the
flow detectors. We searched for features which enable biological vision systems to handle noisy
flow fields successfully. The visual system of primates contains an area that is specially devoted
to processing of visual motion. This area, the middle-temporal or MT area, establishes a space
variant map of the visual motion field. Based on the properties of the middle temporal (MT) area
in [9] a method is proposed to decrease the noise of the optical flow by averaging flow vectors over
image areas which increase in size d proportional to the eccentricity ε from the center of the field
of view (see [1] and figure 1)

d = 0.018 + 0.61ε.

While averaging over large areas is more favorable for noise reduction and smoothing, averaging
over small areas save information. The spatial integration over peripherally increasing image areas
is a compromise between both goals and well adjusted to the typical structure of the flow field
elicited by self motion. The singular point, of the optic flow, i.e. the point with vanishing flow, is
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Figure 1: Increasing receptive fields sizes combined superimposed on a noisy optical flow stimulus

usually near the center of the visual field [8]. Therefore small areas surrounding the center of the
flow field contain sets of vectors with large deviations in the local flow direction. The periphery of
the flow field is more homogeneous allowing spatial averaging over a large scale without loosing to
much information. In human vision this is true even when the direction of heading deviates from
the direction of gaze since eye rotation reflexes in this case introduce rotational flow that nulls
the motion in the direction of gaze [10]. In [9] one can find an application of this method and an
implementation of the Heeger-Jepson [3] heading detection algorithm in terms of a network model.
The network was tested with artificial motion fields of simulated self movements through three
dimensional clouds of random dots or over a ground plane. The flow fields contained eye rotation
components and noise was added. The results show that noise is reduced and heading detection is
possible with errors up to 4 degrees, for the ground plane situation and a signal to noise ratio of 1.

The main goal of the present paper is to apply the MT-like filtering model to optical flow fields
obtained from image sequences with an optical flow algorithm and to test its implication on the
quality of heading detection. The optical flow algorithm we use is a combination of the Nagel-
algorithm [11] with the concept of local multi-modal primitives [7]. These primitives are mo-
tivated by processing in the human visual system as well as by functional considerations and
are regarded as the functional analogues of the hyper-columns in V1 [7]. However, rather then
using sequences obtained by a camera we calculate the basic image sequences from three di-
mensional data sets of several natural environments (Brown Range Image Database, available on
http://www.dam.brown.edu/ptg/brid/range/). The advantage of this procedure is that we have
the exact knowledge about the correct heading direction of the simulated self movements and of
the true flow field and we are able to evaluate the results of the used method quantitatively against
ground truth.

Part of the errors in estimation optical flow from image sequences stems from the aperture problem.
This type of noise is dependent on the local 2D structure of the images which is described by the
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Figure 2: 3D data of a range-image projected onto a sphere, the grey scale encode the intensity of
the reflected laser beam, i.e white: high intensity, black: vanishing intensity

local intrinsic dimensionality. Image areas with rich two dimensional structure usually provide
better flow measurements than image areas with predominantly one dimensional structure (edges)
or largely homogeneous areas. Therefore in addition to the MT-like filtering we test an approach
which takes into account a continuos formulation of intrinsic dimensionality (iD) (see [6]). The
concept of the iD allows to define [6] with respect to noise and the influence of the aperture
problem for each vector of the optical flow field generated by the motion algorithm. We impose
several weighting functions which reflect the confidence expressed by the iD data on the method
of MT-like filtering and compare the results of heading detection with the results after the original
MT-like filtering.

2 Methods

We used for our investigations the Brown Range Image Database (brid) , a database of 197 range
images collected by Ann Lee, Jinggang Huang and David Mumford at Brown University ([4]). The
range images are recorded with a laser range-finder. Each image contains 44× 1440 measurements
with an angular separation of 0.18 degree. The field of view is 80 degree vertically and 259 degree
horizontally. The distance of each point is calculated from the time of flight of the laser beam,
where the operational range of the sensor is 2 − 200m. The laser wavelength of the laser beam is
0.9µm in the near infrared region. Thus the data of each point consist of 4 values, the distance,
the horizontal angle and the vertical angle in spherical coordinates and a value for the reflected
intensity of the laser beam. Figure 2 shows a typical range-image projected onto a sphere.

The knowledge of the 3 dimensional data of a given environment makes it possible to simulate the
view of a moving camera in this scene and calculate both the image on the camera as well as the
true motion field. Figure 3 shows the projection of the data onto a plane identical to the situation
in cameras, where the intensity of light coming from the reflecting surfaces of the environment and
bundled in the lens is projected onto planes of light sensitive sensors or matter. Figure 4 shows the
transformation of the camera centered coordinates of a certain point during self motion.

The components of the camera motion, translation and rotation, simulate straight ahead moving
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Figure 3: Projection of the 3D data onto
a plane, f focal length, γ vertical angle, φ
horizontal angle, range distance, rx, ry 2D
coordinates of the plane

Figure 4: Simulation of a self movement through
an environment given by the range image

(concern the world coordinates) and rotation such that the point in the center of the image is
stabilized. The view direction towards this stabilized point is different from the heading direction.
This form of motion is similar to common biological situations [10]. A human walks through
an environment and fixates between objects or structures on surfaces deviating from the heading
direction while retaining control about his self motion. The fixation direction that we used in
our simulations were obtained from measuring fixations of observers that viewed the scenes on a
computer monitor.

Image sequences and optical flow fields: Despite that the resulting images are not true
grayscale images and the reflecting surfaces looks like floodlighted, it is possible to determine edges
and to identify the objects which originally populated the measured environment and which are now
encoded in the three dimensional data (Figure 5 shows an example). This simple fact is evidence
for the correct positions of the identifiable basic image features like edges and corners used by visual
systems to perform grouping in images. We obtain the optical flow fields from the 3D-generated
image sequences by the Nagel-algorithm [11], modified with respect to the concept of local multi-
modal primitives [7]. This technique calculates the local displacement by the Nagel-algorithm and
performs a local averaging for each local primitive allowing to obtain either the correct flow for
a near intrinsic two dimensional structure like corners or resulting in the normal flow for a near
intrinsic one dimensional structure like an edge within the particular primitive. Since the Nagel-
algorithm operates on local intensity changes over space and time, it is reasonable to assume that
the application of the Nagel-algorithm to image sequences based on the brid-data gives results
similar to results obtained with standard camera images. Figure 5 shows an image sequence based
on a simulated self movement through an environment given by a brid-data set. The left picture of
figure 6 pictures the correct optical flow from this self movement and the middle picture of figure
6 shows the result of the application of the Nagel-algorithm to the image sequence figure 5. The
result is clearly noisy, but captures the overall structure of the true flow.
Heading detection is performed by the Heeger-Jepson algorithm [3]. During our calculations the
algorithm operates on 150 randomly selected flow vectors for each run and the results are accumu-
lated for 30 runs. As shown in the right picture of figure 6 the attempt to apply the Heeger-Jepson
algorithm to the noisy flow in figure 5 leads to a distribution of estimated headings that is broad
and hardly connected to the correct heading. Therefore a rectification of the flow by noise reduction
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Figure 5: Three image frames selected from a sequence generated from the brid-data. The first
image is the first of the sequence, the following images have a distance of 15 and 30 frames respec-
tively from the first. The simulated self movement results in a translational shift of 0.01m and a
rotation of 0.01 degree per frame. The ratios between width and hight and the focal length are
chosen as 1 and 0.7 respectively.

would appear welcome.

3 Results

Reduction of noise by MT-like filtering: First we want to test the model of MT-like filtering
to a fully controlled situation in which we have knowledge of the noise. For our example in figure 7
we applied random noise with a signal-to-noise ratio of 1 to the true optical flow field. Comparison
of the two pictures in figure 7 gives the impression of a dramatically increased quality of the MT-like
rectified flow field. This impression is confirmed by comparing the results of heading detection on
both flow fields (figure 8). The heading directions obtained from the unfiltered flow are spread over
a range of 25 degrees and the deviation of the mean value from the correct heading is 12 degree.
The heading directions obtained from the MT-like filtered flow fall within a range of 6 degree and
deviation of the mean value from the correct heading is about 4 degree. Thus the stability of the
Heeger-Jepson heading detection algorithm is significantly improved compared with the unfiltered
situation. Furthermore the results for the filtered flow match the observations in [9].

The next step is to apply the MT-like filter model to optical flows generated from the Nagel-
algorithm. As the basis for the image sequences we chose three scenes (first row of figure 9) from
the brid-database and simulated camera motion composed of translation and rotation through the
scene. The second row of figure 9 shows the flow fields calculated by the Nagel-algorithm. Obviously
these flow fields are very noisy and the results of heading detection algorithm applied to these flows
are indeed unusable (figure 10). In contrast to the unfiltered flow the heading detection algorithm
applied on the MT-like filtered flow (third row of figure 9)) leads to more stable results (figure 11).
It is possible to recognize the correct heading much better than in the unfiltered case.

In the first picture in figure 11 the width of distribution is 7 degree, the deviation of the mean
value (blue point) from correct heading (red point) is 2.5 degree. In the second picture the width
of distribution is 4 degree and the deviation of the mean value is 1.5 degree. In the third picture
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Figure 6: Left picture: Correct flow directly calculated from the 3D data and the simulated self
movement in figure 5. Middle picture: Flow calculated with the Nagel-algorithm from the image
sequence of figure 5. Right picture: Results of the heading detection applied to the flow in the
middle. Green points represent the estimated heading directions of the individual runs. The blue
point represent the mean value of the estimated headings.The red point represents the correct
heading.

Figure 7: Left: the correct flow field in figure 6 with superimposed noise with a signal-to-noise ratio
of 1, right: the same flow field rectified by MT-like filtering
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Figure 8: Results of heading detection, left: noisy flow, right: MT rectified flow. Green points
represent the estimated heading directions of 30 individual runs each with sub-sampling of 150 flow
vectors. The blue point represent the mean value of the estimated headings of the 30 runs. The
red point represents the correct heading.

the width of distribution is 4.5 degree and the deviation of the mean value is 9.5 degree.

4 Confidence weighting by intrinsic dimensionality

Natural images are dominated by specific local sub–structures, such as edges, junctions, or texture.
Sub–domains of computer vision have analyzed these sub–structures by making use of certain
conepts (such as, e.g., orientation, position, or texture gradient). The intrinsic dimension (see, e.g.,
[13, 2]) has proven to be a suitable descriptor to distinguish between homogenous image patches,
edge, or junction structures. We omit here the detailed mathematical formulation of the continuous
concept of iD and refer for a detailed description to [6].
In brief, the iD-concept characterizes structures or features in images in terms of the distribution
of the intensity in a local area around a single point.

• Local areas in which the intensity is constant in all directions have intrinsic dimensionality
zero (i0D) and describes points of the image where there is no local structure.

• Local areas in which the intensity is constant in one direction have intrinsic dimensionality
two (i1D). These are points of the image where the local structure resembles an edge.

• Local areas in which the intensity is varying in two certain direction have intrinsic dimen-
sionality two (i2D). These are points of the image with a local 2D structure (corners, points
etc.).
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Figure 9: Top row: Basic scenes for the image sequences. Second row: Flow field obtained from
the Nagel-algorithm. Third row: MT-like filtered flow. Fourth row: correct flow.
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Figure 10: The heading results due to the unfiltered flow

Figure 11: The heading results due to the MT-like filtered flow

The association of intrinsic dimension to a local image structure has mostly be done by a discrete
classification [13, 2, 5]. Homogeneous image patches have an intrinsic dimension of zero (i0D),
edge–like structures are intrinsically 1–dimensional (i1D) while junctions and most textures have
an intrinsic dimension of two (i2D). In [6] a continuous definition of intrinsic dimensionality has
been introduced in which 3 confidences for each intrinsic dimension are associated to an image
patch.

With respect to optic flow processing, i1D structures will be affected by the aperture problem
while i2D structures are less affected and are more likely to provide the correct flow. Flow vectors
obtained in areas of i0D are typically unreliable and introduce noise.
Within the continuous formulation in [6] the iD of a point or image patch is described by a point
in a 2D space defined by three barycentric coordinates (i0D, i1D, i2D), i.e.

∑2
K=0 iKD = 1. The

barycentric coordinates can be interpreted as likelihoods or confidences. The continuous concept
is not only a theoretical approach but is related to neuropsychological findings from so called
end-stopping neurons in the primary visual cortex of macaques (see [12]). End-stopping neurons
respond best to endpoints of long contours moving in a certain direction. These neurons solve the
aperture problem for the long contour encircled by the endpoints. Results in [12] (figure 5) show
that the distinction between end-stopped cells and ordinary oriented selective cells is not sharp,
but rather continuous. This can be interpreted as a biological implementation of the continuos
approach of iD. With respect to to our model of MT-like filtering of noisy flow, one can imagine
that the end-stopping property of V1 cells modulates the contribution of cell input to the averaging
procedure in MT in the sense that input from V1 neurons with strong end-stopping is weighted
higher in order to obtain the more correct flow.
In the following we test this idea in the application of MT-like filtering to image sequences by
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Figure 12: The heading results due to the iD-modulated MT-like filtered flow according to the
weighting function wf112,6.

Figure 13: The heading results due to t the weighting function wf212,6.

imposing iD depended weighting functions on the MT-like filtering model. Recall that the iD of a
point or image patch is described as a point in a 2D space defined by the barycentric coordinates
(i0D, i1D, i2D). Let e1 and e2 be two orthonormal vectors spanning the two dimensional space,
the iD given by (i0D, i1D, i2D) is the 2D-vector (i1D + i2D)e1 + i2De2. The weighting functions
we test are

wf1g,s(i0D, i1D, i2D) =
0.5

(e(−(i1D+i2D)g+s) + 1
+

0.5
e(−i2D)g+s) + 1)

,

wf2g,s(i0D, i1D, i2D) =
1

e(−(i2D)g+s) + 1)
.

Here g and s are parameters governing the slope and the position of the jump of the function.
Both functions approach one for i2D = 1 and go to zero for i0D = 1. The difference between the
functions is that wf2 suppresses both the contribution of i0D and i1D whereas wf1 lets structures
with i1D = 1 contribute with a weight of 0, 5. Now, let VK , (i0DK , i1DK , i2DK)K=1,...,N be a set
of N flow vectors calculated from features with certain iD. The averaging procedure is weighted by
iD:

V̄ =
∑N

K=1 wfg,s(i0DK , i1DK , i2DK)Vk∑N
K=1 wfg,s(i0DK , i1DK , i2DK)

.

We use two weighting functions wf112,6, wf212,6 and perform the modified MT-like averaging meth-
ods on the noisy flows (second row of figure 9). The results can be observed in figures 12, 13. In
the first picture in 12 the width of distribution is 8 degree, the deviation of the mean value (blue
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point) from correct heading (red point) is 3 degree. In the second picture the width of distribution
is 5,5 degree and the deviation of the mean value is 1.5 degree. In the third picture the width of
distribution is 5 degree and the deviation of the mean value is 8,5 degree. In the first picture in
figure 13 the width of distribution is 10 degree, the deviation of the mean value is 4.5 degree. In
the second picture the width of distribution is 4,5 degree and the deviation of the mean value is 3.5
degree. In the third picture the width of distribution is 3.5 degree and the deviation of the mean
value is 6 degree.

5 Discussion

Our results clearly demonstrate that MT-like filtering is a reasonable strategy to decrease noise
in optical flow fields and to improve heading detection. The method works well on optical flow
fields based on natural scenes affected by strong noise and the aperture problem. The stability
of the heading detection algorithm is increased, the spread of the resulting heading directions is
dramatically decreased and the mean is near to the correct heading.
Less clear is the potential role of the intrinsic dimensionality. In our tests the sets of results
of heading detection on the ordinary MT-like filtering method and the iD-modified show no or
only little differences in stability, correctness, and spread. This suggest that the use of iD in this
particular manner is limited. We do not believe however that the intrinsic dimensionality has no
relevance for the rectification of optic flow fields and the improving of heading detection. Likely,
the importance of iD informations depends on the statistics of the particular scene. The original
MT-like filtering method works well for rich structured scenes, with lots of corners, nearly equal
distributed horizontal and vertical edges and complex but not uniformly structured textures, the
situation we have for the most natural scenes. In these cases the averaging of the optical flow over
large domains of the view field solves the aperture problem approximately and sufficiently exact
for successful heading detection.
In contrast the iD information can give advantages in cases of sparse scenes with biases in the
distribution of horizontal or vertical oriented edges and less i2D points. In this situation, the
aperture problem is more damaging and can only be solved by using the i2D information. The
question is strongly connected with the problem, whether biological visual systems faced with such
a moving scene use the i2D information or, if not, fail while trying heading detection.
A further reason why increased weighting of i2D information shows no improvement over equal
weighting of all flow vectors might be that the large size of the integration areas in the periphery
of the visual field, relying on a sparse set of i2D vectors can cause location errors. If the only
vector with high i2D within a particular integration area lies near its border, its high weighted
contribution to the averaging procedure would lead to a locally incorrect vector in the center of the
integration area. Equal weighting preserves locational correlations even if each individual vector is
less reliable. We will investigate the meaning of signals with different intrinsic dimensionality more
closely in future work.
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