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Abstract

The human wvisual system is a highly in-
terconnected machinery that aquires its stabil-
ity through integration of information across
modalities and time frames. This integra-
tion becomes possible by utilizing regularities
in visual data, most importantly motion (espe-
cially rigid body motion) and statistical regu-
larities reflected in Gestalt principles such as
collinearity.

In this paper we describe an artificial vision
system which extracts 3D-information from
stereo sequences. This system uses determin-
istic and statistical regularities to aquire stable
representations from unreliable submodalities
such as stereo or edge detection. To make use
of the above mentioned regularities we have to
work within a complex machinery containing
sub—modules such as stereo, pose estimation
and an accumulation scheme. The interaction
of these modules allows to use the statistical
and deterministic regularities for feature dis-
ambiguation within o process of recurrent pr-
dictions.

1 Introduction

Vision, although widely accepted as the
most powerful sensorial modality, faces the
problem of an extremely high degree of vague-
ness and uncertainty in its low level processes
such as edge detection, optic flow analysis and
stereo estimation [1]. However, by integrat-

ing information across visual modalities (see,
e.g., [9]), the human visual systems acquires
visual representations which allows for actions
with high precision and certainty within the
3D world even under rather uncontrolled con-
ditions. The power of modality fusion arises
from the huge number of intrinsic relations
given by deterministic and statistical regular-
ities across visual modalities. The essential
need for fusion of visual modalities, beside
their improvement as isolated methods, has
also been recognised by the computer vision
community during the last 10 years (see, e.g.,
1, 3).

Two important regularities in visual data
with distinct properties are motion (most im-
portantly rigid body motion, RBM, see, e.g.,
[5]) and statistical interdependencies between
features such as collinearity and symmetry
(see, e.g., [23]).! RBM reflects a geometric
dependency in the time-space continuum. If
the 3D motion between two frames is known
then feature prediction can be postulated since
the change of the position and the semantic
properties of features can be computed (see,
e.g., [14]). This can be done by having phys-
ical control over the object (as in [14]) or by
computing the RBM as done in this paper. A
computation of the RBM makes the system

IThere exists evidence that abilities based on rigid
body motion are to a much higher degree hard coded
in the human visual system than abilities based on
statistical interdependencies (for a detailed discussion
see [17]).



more flexible since it allows for acquiring ob-
ject knowledge by watching the object without
grasping is. This is also one of the main con-
tributions of this paper compared with [14].
However, having physical control over the ob-
ject might also have advantageous in specific
situation, e.g., when the RBM is controlled in
such a way that especially cognitive interesting
situation are created.

However, computation of RBM is a non
trivial problem. A huge amount of litera-
ture is concerned with its estimation from dif-
ferent kinds of feature correspondences (see,
e.g., 20, 22]), which are most commonly point
and/or line correspondences. In our system,
correspondences are established by optic flow.
However, one fundamental problem of RBM-
estimation is that methods are in general very
sensitive to outliers. The pose estimation al-
gorithm we do apply [22] computes the rigid
body motion presupposing a 3D model of
the object and a number of correspondences
of 3D—entities between the object model and
their projections in the consecutive frame. In
[22] a manually designed 3D model was used
for pose estimation. Here, we want to re-
place this prior knowledge by substituting the
manually created model by 3D information ex-
tracted from stereo. However, by using stereo
we face the above mentioned problems of un-
certainty and reliability of visual data as de-
scribed above. Because of the sensitivity of
pose estimation to outliers in the 3D-model
we need to compensate these disturbances. We
can sort out unreliable 3D—features by apply-
ing a grouping mechanism based on statistical
interdependencies in visual data.

Once the RBM across frames is known (and
for the computation of the RBM we need a
quite sophisticated machinery) we can utilize
and a scheme which uses the deterministic reg-
ularity RBM to disambiguate 3D entities over
consecutive frames [14].

2 Visual Sub-modalities

Our system acquires stable representations
from stereo image sequences by integrating the

following visual sub—modalities: edge detec-
tion based on the monogenic signal [6], a new
stereo algorithm which makes use of geometric
and appearance based information [15], optic
flow [19], pose estimation [22] and an accumu-
lation scheme which extracts stable represen-
tations from disturbed data over consecutive
frames [14]. An overview of the system is given
in figure 1.

At this point, we want to stress the differ-
ence between two different sources of distur-
bances:

e Qutliers: 3D entities caused by wrong
stereo correspondences. They have an
irregular non-Gaussian distribution (see
figure 3 (top row))

e Feature inaccuracy: Deviation of parame-
ters of estimated 3D entities (e.g., 3D ori-
entation and 3D position) caused by un-
reliable position and orientation estimates
in images. This kind of disturbance can be
expected to have Gaussian like distribu-
tion with its mean close to the true value.

Both kinds of disturbances have distinct
distribution and the visual modules have a dif-
ferent sensitivity to both errors: for example,
while outliers can lead to a completely wrong
estimation of pose, feature inaccuracy would
not distort the results of pose estimation that
seriously.

We will deal with these two kinds of dis-
turbances in distinct ways: OQutliers are sorted
out by a filtering algorithm utilizing the statis-
tical interdependency ”collinearity” in 3D and
by a process of recurrent predictions based on
rigid body motion estimation. Both processes
modify confidences associated to features. Fea-
ture inaccuracy becomes reduced by merging
corresponding 3D line segments over consecu-
tive frames. During the merging process se-
mantic parameter (here 3D—position and 3D-
orientation) are iteratievely adapted.

In the following we briefly introduce the
applied sub—modalities and their specific role
within the whole system.

Feature extraction: Edge detection and ori-
entation estimation is based on the isotropic
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Figure 1. Scheme of Interaction of visual sub—-modalities

linear filter [6] and on phase congruence over
neighbouring frequency bands (see e.g., [13]).
The applied filter [6] performs a split of iden-
tity: it orthogonally divides an intrinsically
one-dimensional bandpass filtered signal in its
energy information (indicating the likelihood
of the presence of a structure), its geometric in-
formation (orientation) and its contrast transi-
tion expressed in the phase (called ’structure’
in [6]). Furthermore, we use structural infor-
mation in form of color averaged at the left
and right side of the edge separately. Figure 2
shows the results of preprocessing.

Stereo: In stereo processing with calibrated
cameras we can reconstruct 3D points from
two corresponding 2D points by computing the
point of intersection of the two projective lines
generated by the corresponding image points
and the optical centers of the camera. How-
ever, most meaningful image structure is in-
trinsically one-dimensional [24], i.e., is domi-
nated by edges or lines. Orientation at intrin-
sically one-dimensional image structures can
be estimated robustly and precisely by various
methods (see, e.g., [11]). Therefore, it makes
sense to use orientation information also for

the representation of visual scenes: from two
corresponding 2D points with associated orien-
tation we can reconstruct a 3D point with as-
sociated 3D orientation (in the following called
’3D-line segment’). A more detailed descrip-
tion can be found in [14].

To find stereo correspondences in the left
and right image we can use geometrical as well
as structural information in form of phase and
color. In [15] we can show that both factors are
important for stereo—matching and that the
optimal result is achieved by combining both
kinds of information.

Note that out stereo algorithm does not
make use of the ordering constraint (such as
, €.8., in [21]) but that the system can also be
used in case of depth continuities. The only re-
striction is the occurence of local line segments
in the scene.

The basic feature we extract from the stereo
module is a 3D line segment coded by its mid—
point (1,2, z3) and its 3D orientation coded
by two parameter (6, ¢). Furthermore a confi-
dene c is associated to the parametric descrip-
tion of the 3D entity. We therefore can formal-



Figure 2. Top: Three images of an image sequence. Bottom: Feature processing
(left: complete image, right: Sub-area). Shown are the orientation (center line), phase
(single arrow), color (half moon on the left and right side of the edge) and optic flow

(three parallel arrows).

ize a 3D-line segment by

1= ((21,22,23), (6, 9);0). (1)

All parameters are subject to modifications
by contextual information (as described be-
low) utilizing the Gestalt law Collinearity and
the regularity RBM across frames.

Pose estimation: To be able to predict 3D—
features in consecutive frames, we want to
track an object in a stereo image sequence.
More precisely, we want to find the rigid body
motion from one frame to the consecutive
frame. To compute the rigid body motion we
apply the pose estimation algorithm [7] which
requires a 3D model of the object as well as
correspondences of image entities (e.g., 2D line
segments) with 3D object entities (e.g., 3D line
segments)?. A 2D-3D line correspondence de-
fines a constraint on the set of possible rigid

2This pose estimation algorithm has the nice prop-
erty that it can combine different kinds of correspon-
dences (e.g., 3D point—3D point, 2D point-3D point,
and 2D line-3D line correspondences) within one sys-
tem of equations. This flexible use of correspondences

body motions that (using a linear approxima-
tion of a rigid body motion [7]) can be ex-
pressed by two linear equations. In combina-
tion with other constraints we get a set of lin-
ear equations for which a good solution can
be found iteratively [7] using a standard least
square optimization algorithm.

Optic flow: The 3D model of the object is
extracted by our stereo algorithm. Correspon-
dences between 3D entities (more precisely by
their 2D projections respectively) and 2D line
segments in the consecutive frame are found
by the optic flow. After some tests with dif-
ferent optic flow algorithms (see [10]) we have
chosen the algorithm developed by Nagel [19]
which showed good results especially at intrin-
sically 1D structures. Correspondences are es-
tablished by simply moving a local line seg-
ment according to its associated optic flow vec-
tor.

makes it especially attractive for sophisticated vision
systems which process multiple kinds of features such
as 2D junctions, 2D line segments or 3D points.



Figure 3. Top: Using the stereo module without ellimination procedure. Left: Pro-
jection onto the image. Middle: Projection onto the xz plane. Note the large number
of outliers. Right: Pose estimation with this representation. Note the deviation of
pose from the correct position. Bottom: The same after the ellimination process.
Note that all outliers could be elliminated by our collinearity criterion and that pose

estimation does improve.

Using collinearity in 3D to eliminate
outliers: The pose estimation algorithm is
sensitive to outliers since these outliers can
dominate the over—all error in the objective
function associated with the equations estab-
lished by the geometric constraints. We there-
fore have to ensure that no outliers are used
for the pose estimation.

According to the Helmholtz Principle, every
large deviation from a “uniform noise” image
should be perceivable, provided this large de-
viation corresponds to an a priori fixed list of
geometric structures (see [4]). The a priori
geometric structure we do apply to eliminate
wrong 3D—correspondences are collinear struc-
tures in 3D: We assume that (according to the
Helmbholtz principle) a local 3D line segment
that has many neighbouring collinear 3D line
segments is very unlikely to be an outlier and
we only use those line segments for which we
find at least a couple of collinear neighbours.
More precisely, we lower the confidence ¢ in

(1) for all line segments that have only few
collinear neighbours. Figure 3 (middle) shows
the results of the elimination process for a cer-
tain stereo image). We can show that the elim-
ination process improves pose estimation (see
figure 3 (right). For a more in depth discus-
sion about applying Gestalt principles within
our system see [18].

Acquisition of object representations
across frames: Having extracted a 3D repre-
sentation by the stereo module and having es-
timated the RBM between two frames we can
apply an accumulation scheme (for details see
[14]) which uses correspondences across frames
to accumulate confidences for visual entities.
Our accumulation scheme is of a rather general
nature. Confidences associated to visual enti-
ties are increased when correspondences over
consecutive frames are found and decreased if
that is not the case. By this scheme, only enti-
ties which are validated over a larger number of
frames (or for which predictions are often ful-



filled) are considered as existent while outliers
can be detected by low confidences (in Figure 4
a schematic representation of the algorithm for
two iterations is shown). Since the change of
features under an RBM can be computed ex-
plicitly (e.g., the transformation of the square
to the rectangle from the first to the second
frame), the rigid body motion can be used to
predict the correspondences (see also [14]).

This accumulation scheme presupposes a
metrical organisation of the feature space. If
we want to compare visual entities derived
from two frames even when we know the ex-
act transformation corresponding to the rigid
body motion, the corresponding entities can-
not be expected to be exactly the same (the
two squares in figure 4 are only similar not
equal) because of factors such as noise dur-
ing the image acquisition, changing illumina-
tion, non-Lambertian surfaces or discretiza-
tion errors. Therefore it is advantageous to
formalize a measure for the likelhood of corre-
spondence by using a metric (for details see
[14]). Once a correspondence is established
we apply an update rule on the confidence ¢
as well as the semantic parameters (z1, T2, z3)
and (0,¢). for the confidence and semantic
properties of the line segment (for details see
[14] and [10]). That means that by the ac-
cumulation scheme our 3D line segments are
embedded in the time domain, they represent
features in 3D-space and time.

Integration of visual sub-modalities: The
recurrent process based on the sub-modalities
described above is organised as shown in fig-
ure 1. For each frame we perform feature ex-
traction (edge detection, optic flow) in the left
and right image. Then we apply the stereo al-
gorithm and the elimination process based on
the Helmholtz principle. Using the improved
accumulated model (i.e., after eliminating out-
liers), we apply the pose estimation module
which uses the stereo as well as the optic flow
information. Once the correct pose is com-
puted, i.e., the RBM between the frames is
known we transform the 3D entities extracted
from one frame to the consecutive frame based

on the known RBM (for details see [14]).Then
we are able to perform one further iteration of
the accumulation scheme.

We have applied our system to different im-
age sequences, one of them is shown in fig-
ure 2. Figure 5 (left) shows the results. At
the top the extracted stereo representation at
the first frame is shown while at the bottom
the accumulated representation after 6 frame
is shown. We see that the number of outliers
can be reduced significantly. In figure 5 (right)
the mean difference of the semantic parame-
ters (3D—position and 3D-orientation) from a
ground truth (manually measured beforehand)
is shown. We see that the difference between
the extracted representation (consisting of line
segments with high confidence) compared to
the ground truth for position and orientation
decreases during accumulation. Further simu-
lations can be found in [10].

3 Summary and Discussion

We have shown that through integration of dif-
ferent visual modalities we are able to extract
reliable object representation from disturbed
low level processes. Since we want to make
use of the regularity RBM across frames we
need to use a complex mechanism (which uses
different sub—modules) that allows to compute
the RBM. This mechanism also made use of
statistical regularities to elliminate outliers for
pose estimation. Our feature representation
allows for a modification of features depend-
ing on contextual information. The confidence
¢ codes the likelihood of the existence of the vi-
sual entity while semantic parameters describe
properties of the entity. Both kind of descrip-
tors are subject to modification by contextual
information, i.e., by the statistical and deter-
ministic regularities coded within the system.

Our system has some interesting proper-
ties compared to other systems. Firstly, dif-
ferering to classical structure from motion ap-
proaches (see, e.g., [12, 5]) we do not intend to
aquire 3D—information only but we are inter-
ested in attributes that are relevant for percep-
tive tasks. Here, our representations consist
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Figure 4. The accumulation scheme. The entity e! (here represented as a square) is
transformed to 72 (e'). Note that without this transformation it is barely possible
to find a correspondence between the entities e! and e? because the entities show
significant differences in appearance and position. Here a correspondence between
T2 (el) and e? is found because a similar square can be found close to T(:2)(e!)
and both entities are merged to the entity é2. The confidence assigned to é? is set to
a higher value than the confidence assigned to e! indicated by the width of the lines
of the square. In contrast, the confidence assigned to ¢'' is decreased because no
correspondence in the second frame is found. The same procedure is then applied
for the next frame for which again a correspondence for e! has been found while no
correspondence for ¢'' could be found. The confidence assigned to e! is increased
once again while the confidence assigned to e'' is once again decreased (the entity
has disappeared). By this scheme information can be accumulated to achieve robust

representations.

of line segments. We use these representation
for the task of tracking of objects. Represen-
tations based on line segments have also been
used for object recognition (see, e.g., [16]). We
have applied our accumulation scheme to ge-
ometric 3D entities. However, this scheme is
generic and we intend to apply our accumula-
tion scheme to other visual domains (such as
color, texture or other appearance based infor-
mation) to extract richer and more powerfull
object representations.

Secondly, in our representations semantic
properties of features and their reliability are
explicitely coded. Both, semantic properties
and the reliability are subject to contextual
influences. The integration of contextual in-
formation and its modelling by recurrent pro-
cesses that modify reliabilities is the central
aim of our current project and our method
differs in that respect to classical structure
from motion algorithms (see, e.g., [8]). Here,
we have used the reliability information to
improve the RBM estimation by picking out
certain ’good’ feature constellations from the
big feature pool. This way to handle outliers
works complementary to other well established
methods such as RANSAC ([2]). Coding in-

formation with its reliability allows to keep
hypotheses that are (looking at them locally)
unlikely but may become likely taking the con-
text into account.
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