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Abstract. Simoncelli & Heeger studied how the motion is processed in humans 
(V1 and MT areas) and proposed a model based on neural populations that ex-
tract the local motion structure through local competition of MT like cells. In 
this paper we present a neural structure that works as dynamic filter on the top 
of this MT layer and can take advantage of the neural population coding that is 
supposed to be present in the MT cortical processing areas. The test bed appli-
cation addressed in this work is an automatic watch up system for the rear-view 
mirror blind spot. The segmentation of overtaking cars in this scenario can take 
full advantage of the motion structure of the visual field provided that the ego-
motion of the host car induces a global motion pattern whereas an overtaking 
car produces a motion pattern highly contrasted with this global ego-motion 
field. 

1   Introduction 

The work presented in this paper has been developed in the framework of 
ECOVISION European Research project [1]. One of the objectives of ECOVISION 
consortium is the development of a pre-cognitive visual model that can be useful for 
real world problems. In particular, the rear-view mirror blind spot monitor is pre-
sented as a feasible problem in which motion processing can provide useful informa-
tion for the overtaking car segmentation. 

One of the motion processing models studied in the first stage of the project is the 
Simoncelli and Heeger model (S&H) that constitutes a model with strong neuro-
physiological bases. The S&H work proposes a model of how the cortical areas (V1 
and MT cells) can extract the motion structure through neural local computation and 
competition [2,3]. The output layer uses neural population coding, which can be seen 
as an inefficient code but represents and advantage if the post-processing is done 
through neural computation as presented in this paper. This is not the case if the optic 
flow extraction is done through more mathematical based algorithms.  

 
The MT cells specialization on specific movement direction and velocity modules 

enables a connectivity that can embody perspective deformation correction and rigid 
body motion enhancement. This can be achieved by a collective-competitive connec-



tivity pattern as described in section 3. Motion processing is normally very noisy and 
needs of further post-processing before addressing image segmentation. In this paper 
we describe how a simple connectivity pattern can be of interest for neural computa-
tion of noisy motion information. This connection pattern forces individual cells to 
behave as dynamic filters that are sensitive to more reliable movement features than 
simple spatio-temporal correlations. 

This post-processing layer is composed by cells that collect the cell activity from 
MT cells sensitive to similar motion primitives, and compete between themselves to 
impose a movement feature locally in each visual field point. Furthermore, we also 
describe how this can enhance the rigid body motion segmentation capabilities of the 
processing layer by connecting MT cells of local neighbourhoods to facilitate the 
detection of movement features of rigid bodies through the visual field.    

The application of the neural processing strategy presented in this paper in real 
world problems is also addressed. In particular, promising results have been obtained 
for the segmentation of overtaking cars in the rear-view mirror blind spot. This appli-
cation is currently being addressed by many application driven research groups [4]. 
Besides, in this application the motion processing plays an important role, since an 
overtaking car exhibits a forward motion pattern clearly contrasted against the global 
backward motion pattern observed in the rear-mirror due to the ego-motion of the 
host car. 

2   Bio-inspired model for computing optical flow  

The Simoncelli & Heeger model [2,3], consists of two primary stages corresponding 
to cortical areas V1 and MT. The computation form is highly parallel and regular. 
 

A linear model is used for V1 simple cells. This explains simple cell selectivity for 
stimulus orientation and spatial frequency, and the cells respond to both opposite 
polarities contrast stimulus. 

V1 complex cells sum weighted simple cell afferents distributed over a local spa-
tial region, each of them having the same space- time orientation and phase. Their 
receptive fields are modeled using only edge detectors. Each V1 neuron squared and 
normalizes its inputs, and V1 outputs with the same space-time orientation are spa-
tially combined using positive weights to get V1 complex cells receptive field. 

MT cells are modeled combining the outputs of a set of direction-selective V1 
complex cells, whose preferred space-time orientations are consistent with the MT 
cells characteristic velocity. The mechanism for velocity selectivity can be described 
in the spatio-temporal domain easily. The power-spectrum of translational pattern lies 
on a plane, and the tilt of the plane depends on the velocity; in this way a MT cell 
detects the tilted plane with maximum response [5] and different combinations of V1 
cells can be used to get the MT receptive field [6,7]. Finally, a Winner Takes All 
configuration among the MT population selects only the MT cells with higher input, 
i.e., the one that best matches the local motion pattern. 



 
Fig. 1. Population response example. The result of a plaid stimulus composed by a sinusoidal 
grating moving rightwards and another moving downwards is a moving pattern toward the 
right-bottom corner (a). A set of MT neurons responses are codified using grey levels. The 
relative position of the winner element with respect to the center of the population, showing the 
velocity module and direction. Maximum responses are given at the best tuned MT neuron for 
that stimulus, but MT cells tuned at near velocities are not zero (b).  Finally, the winner ele-
ment indicate the estimate velocity (c). 

The implementation of S&H model, showed in fig. 2, can be summarized in 4 steps: 
1. Computing local contrast stimulus. 
2. Modeling V1 simple and complex neurons, using spatio-temporal third Gaussian 

derivatives and spatial pooling. 
3. Modeling MT neurons summing the weighted responses of V1 cells which lie 

on its characteristic plane. 
4. Computing winner element for each pixel in the visual field  

 
Fig. 2. S&H Model. An overtaking car sequence is used to evaluate the model. The basic set of 
third Gaussian derivatives are formed by Gxxx, Gyyy, Gttt, Gxxy, Gxyy, Gxxt, Gxtt, Gyyt, Gytt and 
Gxyt. This pre-filtered images are combined to get V1 spatio-temporal orientation cells and their 
combinations give us the MT receptive field. Finally, for each pixel the winner take all neuron 
is considered the correct vector velocity value.  



The basic model used to describe V1 simple cell receptive field is an edge detector 
that uses spatio-temporal third Gaussian derivatives [8]. For our considerations we do 
not take into account other possible receptive fields such as bars detectors or DOG’s 
like. Our implementation uses a basic spatio-temporal set of 40 filters with only one 
spatial scale to interpolate the MT characteristic orientation because biological sys-
tems have only a limited set of V1 orientations [9]. As other energy models [10], the 
contrast problem is hard to solve and some kind of normalization techniques [11] are 
used to minimize this effect. Finally, the MT neurons sum the weighted contribution 
of V1 cells near its preferred velocity. 

One model limitation is the detection of second order motion. This kind of motion 
has power spectrum that lies out of the origin so the proposed filters can not detect it. 
Some modifications could be added to detect second order motion [12], but for the 
addressed application, in which we are just interested in translational motions, this is 
not necessary.  

3   Dynamic Filters 

The S&H layer is connected to a new neural layer that we have called Collector Layer 
(CL). The synaptic connection is done through a converging many-to-one excitatory 
pattern.  

CL cells work as dynamic filters to segment the overtaking vehicle. Considering 
the kind of input information, the CL cells select only the features necessary for the 
segmentation process. First of all, because of the application addressed is focussed in 
discriminating between leftward (ego-motion) and rightward (overtaking vehicle) 
moving points, only the cortical S&H neurons that match these directions (leftward 
by [-135,215] degrees and rightward by [-45,45] degrees) are connected to the Col-
lector Layer. In the other hand, the configuration of the collector layer neurons em-
bodies different aspects about the character of a moving object that are important for 
the segmentation task: rigid body motion and scene perspective motion pattern de-
formations.  

All the points in a rigid body move at a similar speed and in the same direction. 
The presence of detached points, belonging to a rigid body, that move in opposite 
direction with respect the majority of the points at the rigid body is considered noise. 
In addition, it is expected all points in a rigid body to be placed in the same 
neighbourhood of the image. 

The motion pattern deformation due to the perspective from the rear-view mirror 
can be summarized as follows. A moving object (overtaking car) with a constant 
speed is expected to move slowly when it is localized in the very left side of the im-
age (far away) and its speed will increase as it moves (overtakes) rightwards through 
the visual field (closer position). Considering this, forward sensitive neurons on the 
left side of the visual field tuned to higher speeds are less frequent than neurons 
placed on the right side and vice versa. 

The S&H outputs stimulate the CL composed by self-competing collector neurons. 
Every collector neuron is tuned to a neighbourhood of a characteristic module veloc-



ity (by converging connections), in a fix direction. Therefore, every CL neuron inte-
grates the activity of all the outputs from a 5x5 neighbourhood in the S&H layer 
(upper framed zones with continuous line in Fig. 3) sensitive to the same motion 
direction and velocity module.  

The CL has the configuration of a self-competitive layer, so the collector neuron 
that receives the maximum stimulus in its spatial influence area (bottom framed zone 
with continuous line in Fig. 3) inhibits the others and dominates in its local area 
(Winner Takes All). This helps to detect rigid body motion; in other words, we can 
find rigid bodies in areas where there are winner collector neurons because they re-
ceive the input excitation of a group of MT neurons that are sensitive to the similar 
velocities (in module and direction) and are positioned in the same spatial area.  

 
Fig. 3. Every collector makes spatial integration of the velocities (in module and direction) 
among a population of 5x5 S&H excitatory output neurons. The CL has the structure of a 
Winner-Takes-All layer, so there is just one collector neuron winner in a neighbourhood. A 
winner node receives synapses from other winners in an influence area. A group of neurons 
that detect the same direction support each other (white exciting synapsis), but if there is a 
neuron detecting an opposite direction it is inhibited by the synapses coming from other nodes 
corresponding to the same spatial neighbourhood (black inhibiting synapsis). The upper figure 
shows the synapses among three winner collector neurons. Two neurons detect rightward mo-
tion direction (R) and the other detects leftward motion detection (L). The last one is inhibited 
by the other nodes (local majority). 

In the other hand, the winner neurons in an influence area at CL (bottom in Fig. 3) 
can interact with other winner neurons from other influence areas in their neighbour-
hood. This interaction has inhibitory or excitatory character, facilitating the domina-
tion of large features and inhibiting those winner neurons whose motion direction is 
different with respect to the majority of the surrounding winner nodes. In this way, 
the output response of this filtering neural layer (CL) will be non-zero in areas where 
there are winner collector neurons non-inhibited by others winner nodes.  



The CL neurons are characterized by a time constant that takes into account how 
the stimulus drives the onset and offset of the elements of this layer. If we choose this 
time constant to be long, that means that more input frames with a lasting motion 
pattern are needed to excite a neuron and make it dominate against previous per-
ceived patterns. 

The distribution of the specialised collector neurons is non-uniform, i.e. the num-
ber of collector cells tuned at low velocities is higher in the left hand side of the layer 
than the number of collector neurons tuned at high velocities in the same place; and 
the opposite occurs in the right hand side of the layer. In this way, we facilitate the 
detection of slow movements in the left side of the visual field and rapid movements 
on the right side; this is used to correct the perspective deformation. 

4   Results 

We show the neural segmentation results of the previously described system applied 
to real overtaking car sequences. Our neural layers are capable of segmenting rigid 
objects that are moving in opposite horizontal directions.    

Fig 4 (a,b), shows overtaking car sequence with dark car in a shinning day re-
corded with a conventional CCD camera. Left column are the original images of the 
overtaking sequences in two different stages, in the middle column the S&H extracted 
optical flow is shown. The grey scale indicates the velocity module and arrows show 
only the motion direction (all arrows have the same length). The right column shows 
the dynamic filters outputs. The segmented overtaking car is drawn using dark colour 
(rightward motion) and the background, moving thought the opposite direction, use 
bright colour. The collector layer receptive fields are sensitive only to synapses be-
longing to MT neurons tuned in a cone of velocities directions. For example, the 
bottom car optical flow in Fig 4.b indicate motion out of this allow velocities cone, so 
the collector layer output discards these components. 

Other results are shown in Fig 4 (c.d). An overtaking car sequence in a foggy and 
rainy day recorded with high dynamic range camera [13].The weather produces a 
noise sequence with low contrast, therefore a special camera is necessary for this 
situation. Consequently, the extracted optical flow is worst than the one of the previ-
ous sequence. Other effects that contribute to get worst car segmentations are light 
reflection on the road and low contrast that produces more filter blurring.  Another 
problem factor is the colour-depth. The high dynamic range camera uses 32 bits pre-
cision and we have used only 8 bits depth. This effect produces a noisy pattern that 
affects mainly the right side of the image and gives us wrong optical flow estimation 
in this area. But, it is clear the advantage of using dynamic filter outputs to segment 
correctly the overtaking car. 
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Fig. 4. Overtaking car sequence in a shinning day (a,b) and in a foggy and rainy day (c,d). 



5   Conclusions 

This paper describes a bio-inspired system viability to segment objects using optical 
flow extracted from motion information. Motion information from V1 and MT layers 
is filtered by post processing layer that works as dynamic filters. The correction pat-
tern from S&H MT cells this collector layer can embody aspect that facilitates the 
segmentation of moving rigid bodies and can also partially correct the deformation of 
the visual field due to the perspective of the rear view mirror. 

The neural system proposed is highly parallel. It is a self-competitive neural 
mechanism for feature selection. All this enhances the capability of segment the rigid 
bodies from noisy environments.  
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