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Abstract 
The rear-view mirror is unhelpful when an overtaking car is in the blind quadrants 
(blind spot). In this contribution we describe the software implementation of an algo-
rithm to monitor vehicle overtaking processes. This algorithm detects the vehicle to 
the rear, and discriminates whether it is approaching or not, and if approaching, it 
alerts us of its presence.  The proposed system is based on the Reichardt correlator 
model [1]. The approach presented uses the saliency of motion features in a competi-
tion scheme to filter noise patterns. In this way features corresponding to rigid body 
motion self-emerge from the background. Real overtaking sequences have been to 
develop this monitoring system.  
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1. Introduction 
Human mistakes or distractions are the cause of many traffic accidents. This motivates 
research efforts in different areas (vision, smart control, multi-modal fusion, etc) ap-
plied to the automotive technology, mainly related to vehicle security and driver assis-
tance [2, 3, 4]. In 10 years time, vehicles will most likely have built-in devices based 
on computer vision to aid the driver. The medium-long term goal is to implement 
devices based on the vertebrate visual system, due to their astonishing efficiency in 
analysing dynamic scenes. However, current vision models are limited and of high 
computational cost.  

Flies are capable of exploiting optical flow by calculating the local image motion 
through Elementary Motion Detectors (EMDs) and integrate these signals. This proc-
essing takes place in neurons with large dendritic trees and whose receptive fields 
match certain optic flow fields [5]. Reichardt and other researchers developed a corre-
lation based model of motion detection that captures the functionality of these neural 
circuits [1].  

This paper describes the software implementation of an algorithm, based on 
EMDs, to analyse overtaking scenarios. The algorithm detects the vehicle to the rear, 
and discriminates whether it is approaching or not. The whole system, using the algo-
rithm, can alert the driver of a potential hazard. It could prevent an accident when the 
driver plans to change lanes when another vehicle is close to the blind spot of his rear-
view mirror. Fig. 1 illustrates the problem. Only area (1) is directly visible when the 
driver turns his head left, therefore, loosing his visual track. Area (2) can be seen by 
the driver through the rear-view mirror. Area (3) is the one covered by the camera. A 
vehicle (A) can be seen by the camera and by the driver through the rear-view mirror. 



The vehicle in (B) is positioned in the blind spot and therefore only the camera can 
track it. This blind spot area is the one to be monitored by the system.  

 

Figure 1.  Problem description. 
 
This work is part of the European Project ECOVISION [6]. Its goal is to employ 

basic knowledge about biological vision systems to design a hybrid software-hardware 
system to address the posed problem.  

We have used real overtaking sequences to develop this monitoring system. The 
images have been taken with a camera fitted to the driver’s rear-view mirror. They 
have been provided by Hella [7] (partner of ECOVISION). The sequences comprise 
500 frames (20 seconds of recording) with a resolution of 288x384 pixels per frame 
and 256 grey levels. The sequences include various overtaking processes: slow over-
taking, rapid overtaking, inverse overtaking, etc; and represent the initial stages of an 
ideal test bed for this type of application. 

The overtaking database includes sequences in very different weather conditions 
taken with a High Dynamic Range Camera. This has shown to be more robust for 
outdoor applications. The proposed algorithm has been tested with different weather 
conditions and has produced very promising results as shown in Fig. 9. 

The approach described in this paper is being implemented in digital real-time 
hardware, specifically in the FPGA device. A preliminary design has already been 
completed using a low cost 200K equivalent gates device appropriate for the parame-
ters shown above. 
 
2. The Detection Algorithm 
The original sequence is pre-processed using the Sobel detector for edge extraction. 
This pre-processed sequence is the input for a Reichardt block, where we correlate 
each pair of pixels in the sequence through a set of EMDs tuned to different velocities. 
Finally, we assign a velocity to each pixel at every frame. This velocity map from the 
Reichardt detector block is processed in the next stage, where dynamic filters modify 
the velocity map applying rigid body motion rules to characterize moving objects. We 
also apply rules related to perspective correction and temporal coherency to finally 
segment the vehicle. All these stages will be explained in detail in the next sections. 
 
2.1 Pre-Processing  
David Marr’s visual perception theory [8] pointed out, according to the results ob-
tained by neurophysiology experiments, that object borders are the most important 



cues to extract scene structure. For this reason, we start by obtaining the spatial image 
edges and, in the second step, these edges are processed to detect motion. 

Eventually, we want to implement the proposed algorithm through specific hard-
ware to be used in embedded systems. For this reason, we have chosen a simple edge 
detector able to provide acceptable real-time outputs to Reichardt detectors. Conse-
quently, we have used a Sobel gradient detector [9] to extract the edges. However, 
thinner edges are desirable. So, we only use those edges which are local maximums in 
a chosen gradient direction. 

We only detect the vertical edges. Due to the aperture problem, this approach is 
unable to obtain non-horizontal movement components. However, this is not so im-
portant for the posed problem since the scene’ dominant movements are sideward. 
Furthermore, the horizontal velocity component is enough to determine the approach-
ing trajectory and estimate the time to contact or, at least, the relative velocity with 
respect to our vehicle. In overtaking sequences on highways with more than two lanes, 
the lane change process is detected in a higher-level stage (following the sparse map 
evolution). 

Horizontal edges can be also computed but this increases the noise in the next 
processing stage (Reichardt detectors). 

The output of the pre-processing stage is a sparse map composed of pixels with 
non zero intensities indicating an edge. Consequently, a system based on this approach 
has a low computational cost. 
 
2.2 Reichardt Detector  
Both predators and preys have visual systems specialized in motion detection. They 
have provided inspiration for many motion detection algorithms proposed in the litera-
ture [10, 11, 12, 13, 14]. The system described in this paper is based on the Reichardt 
correlator model [1] and, in particular, on the fly motion detection model. 

Although the Reichardt model was originally developed to explain insect motion 
detection mechanisms, it has been also used to explain motion detection in humans, 
cats and birds [15, 16, 17]. Moreover, most spatio-temporal energy models are 
mathematically equivalent to the correlator model [1]. 

Fig. 2 shows a simple Reichardt detector. A stimulus sequentially reaches the two 
detector inputs (a and b). 

When the pattern moves in the preferred direction (Fig. 2.a.) the temporal separa-
tion of the signals from both input channels is compensated by a delay (d). The output 
of both channels will be simultaneously active when the delay is appropriate. In this 
way the two outputs will be perfectly correlated. When the pattern moves in the oppo-
site direction (Fig. 2.b.) the delay increases the temporal separation between the two 
channel outputs. The output signals have less correlation and, consequently, the detec-
tor response will be weak. 

Two sub-units, as the one described above, form the complete elementary detector. 
One sub-unit detects motion to the right and the other sub-unit detects motion to the 
left (Fig. 2.c.). The complete detector output will be the subtraction of the two sub-
unit output signals; a positive final output signal indicates motion to the right, while a 
negative total output indicates motion to the left.  



 

Figure 2. Reichardt detector; a) an edge moves in the preferred detector direction; b) an edge 
moves in the opposite direction; c) Complete Elementary Detector. 

 
2.3 Velocity Tuning 
From the above description, it should be noted that precise velocity tuning adjustment 
of the Reichardt detector delays is very important. If the input pattern speed and cell 
delay are different the detector will not respond significantly. The biological example 
of this is the Australian tiger beetle (cincindela hudsoni) [18] which is the fastest 
running insect in the world (10 km/h). However, its motion detector cells respond only 
to slower speeds. Consequently, the Australian tiger beetle is blind when it runs, and 
from time to time, it needs to stop in order to adjust its trajectory to the prey move-
ment. 

Although biological visual systems appear to be capable of estimating image 
speed, the basic Reichardt detector does not function as velocity estimator. It only 
shows motion direction. Some authors have proposed that animals capable of estimat-
ing image speed have a collection of detectors tuned to different velocities, or have 
alternative motion detector systems [19]. In this paper, we have used such a multi-
velocity-detector composed of a group of single-velocity-detector cells as the one 
shown in Fig. 2.c. Each single-velocity-detector cell in the set is tuned to a different 
velocity. The set of velocities that can be tuned is enough for the purpose of the appli-
cation, i. e., difficulties arising from blindness of the system to some velocities are not 
a problem. 

We use the set of multi-velocity-detectors to correlate pairs of pixels. As a result, 
we get a set of velocities associated with each pixel-pair, one from each EMD in the 
set. The velocity finally associated with a pixel-pair is the one obtained from that 
particular EMD which maximizes the correlation.  

The saliency map of this stage shows the velocity (amplitude and direction) asso-
ciated with each pixel in all the frames in a sequence.  

All the EMDs tuned to a particular velocity compose what we call velocity chan-
nel. We integrate the EMDs responses of a local area of the input image as shown in 
Fig. 3, obtaining linear plots that represent the population activity of EMDs of a par-
ticular velocity channel along the x-axis of the image.  
 
2.4 Rigid Body Motion and Perspective Correction 
The output of the detector layer is a cloud of points. Each point (pixel) is associated to 
a velocity and the velocities in a neighbourhood of pixels can be different in amplitude 
and/or direction. Consequently, we have a number of points which move at their de-



tector characteristic speed. But how to isolate the overtaking vehicle from this diffuse 
cloud of points?. 

To do this we apply a rigid body motion rule to segment the vehicle. In a rigid 
body all points move at the same speed (amplitude and direction). Therefore, if we 
can detect such a population of pixels in a limited area of the image, they are indica-
tive of the presence of the vehicle or another rigid body.  

However, due to the perspective distortion this is not true in our sequences. In this 
case, the points in the distant part of the rigid body seem to move more slowly than 
closer points. The rear of the vehicle is farther away and appears to move slowly, so 
the slow velocity detectors will respond to it. The front of the vehicle is closer and it 
seems to be moving faster and rapid speed detectors detect it. For this reason, different 
velocities in the sequence must be taken into account in order to synchronize front and 
rear of the car.  

The perspective deformation effect explained above applies to the complete visual 
field of the rear-view mirror. Hence, a moving object (overtaking car) is expected to 
move slowly when it is localized in the very left side of the image and its speed will 
apparently increase as it moves (overtakes) rightwards through the visual field due to 
the perspective effect in the rear-view mirror. 

We have introduced some rules to deal with this perspective deformation. These 
rules allow us to filter the output signals from our Reichardt multi-velocity-detector.  

See Fig. 3 for an example of how this is done. In the upper part of the figure we 
can see the velocity map of the Reichardt stage. Each point in the figure is associated 
to a velocity. The medium part of the figure represents a single velocity channel, the 
plot of the number of points in each restricted area within the figure, with velocities 
that belong to cluster Vi. Locations Pa and Pb of the velocity channel Vi gather the 
points of the area A and B in the image, respectively. This process is computed in 
identical windows along the x-axis, producing the velocity channel response. Pb re-
ceives only poor contribution of its window (B) while Pa is a local maximum; in other 
words, there is an important population of points tuned to the cluster characteristic 
velocity Vi. These velocity channels work as band pass filters. Only those points of the 
velocity map tuned to the cluster velocities that produce the local maximum of the 
velocity channel plot are retained. The maximum corresponds to points were a rigid 
body motion induces coherent feature motion. Hence, the window B does not produce 
an output (the points belonging to this receptive field are filtered); however, the points 
tuned by Vi in window A appear in the final output layer.  

In other words, the sum of the components detected in a local region of the frame 
enhances the detection capability of solid objects. This approach helps to eliminate 
patterns such as those produced by the wind on the vegetation and others. 

Moreover, if the detectors indicate that the vehicle moves rightwards, then it is ap-
proaching us. This is the situation we would need to be alerted of. On the other hand, 
if the detectors indicate that the vehicle moves leftwards, then it is moving away, and 
it will not disturb us. 

So far, we have demonstrated the application of the dynamic filters by counting 
points in areas only along x axis (by columns) in order to understand the method, but 
our results have been obtained by applying a grid; in other words, we have considered 
windows along both x and y-axes.  



 
3. Results 
Fig. 4.a shows a real camera image. The representation in Fig. 4.b shows the results of 
pre-processing (vertical edges detection).   
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Figure 3. Using velocity channels as dynamic filters 

 
When we apply the Reichardt detector to the vertical edges we obtain the 

representation in Fig. 4.c (features moving to the right) and Fig. 4.d (features moving 
to the left).  

Figs. 4.c and 4.d are very noisy; they also contain erroneous points (leftward mov-
ing points in the area occupied by the car and rightward moving points in the road 
area). In order to reduce the noise and effectively segment the overtaking car we can 
use the velocity channel responses (Fig. 5) to dynamically filter these velocity maps.  

Each plot presents the number of points synchronized with a speed in the range of 
Vi (the characteristic velocity of each of the 10 channels or motion detector popula-
tions). Its windows cover 20 columns from the input image (Figs. 6 and 7). In this 
way, the points of Figs. 4.c and 4.d have been grouped into different velocity ranges 
around certain spatial areas. This is what is represented in Fig. 5, the left column 
shows rightward velocity channels and the right column shows leftward velocity chan-
nels. 



These velocity channel responses are used as dynamic filters to produce the repre-
sentation shown in Figs. 6.a and 6.b that contain less erroneous points. It can be seen 
that Fig. 6.a represents the filtered rightward moving features (only present in regions 
filtered by the maximums indicated in Fig. 5). All these points belong, in fact, to the 
overtaking car (rigid body motion), so we can take the estimated centre of the overtak-
ing car as the centre of mass for these filtered features moving rightward. On the other 
hand, the points plotted in Fig. 6.b represent the leftward moving features filtered by 
the maximums indicated in Fig. 5. All of them correspond to the ego-motion pattern.  

The results shown are very promising, but are they really accurate? To evaluate 
this, we manually marked the overtaking car with a rectangle in every frame in the 
sequence (Fig. 7 shows this). 

We calculated the distance between the centre of mass (in Fig. 7 it is represented 
by a cross) and the centre of the rectangle. This distance is normalized dividing it by 
the radius of the minimum circle containing the rectangle in each frame. This distance 
is what we call Quality Measure (QM). If the centre of mass falls into this circle this 
QM is below 1 and we are detecting the overtaking vehicle. In other cases higher than 
1 noisy pattern are dominant and lead to incorrect estimations. Fig. 8.a shows the QM 
along the sequence. When the overtaking vehicle is small (far away) the detection has 
errors (left image shown in Fig. 7). However, at a medium distance (around frame 
110), the vehicle is big enough and the vehicle is correctly detected. In fact, accurate 
detection occurs when the overtaking vehicle becomes a potential hazard. 

Fig. 8.b shows the variance of the QM along the sequence. We calculated the vari-
ance of the QM in every 5 estimations. We can see a convergence to zero, in other 
words, from a point in the overtaking process we detect the overtaking vehicle without 
errors, and the system is able to warn of the presence of the overtaking car. In Fig. 8.a 
can be seen that from approximately frame 110 (shown in the centre image of Fig. 7), 
the detection is done accurately. 

During the Reichardt stage we have used the correlation between single pixels. We 
have also repeated the process using a correlation between blocks of pixels (block 
matching). The advantage of block matching is that the Quality Measures falls below 
1 sooner, and the convergence to zero is also faster. 

 
4. Conclusions 
The present contribution describes a motion processing system to be used as a blind 
spot monitor. It is intended to detect overtaking cars. The front-end of the system 
comprises Reichardt motion detectors. We define dynamic filters based on motion 
patterns of the image that seem to correspond to moving objects. These dynamic fil-
ters effectively clean noisy patterns and help to segment on overtaking vehicle. This 
filtering technique is robust because it is only based on a rigid body motion rule. It 
detects areas within a population of features moving coherently (with the same veloc-
ity and direction), being good candidates for a moving rigid body. The moving fea-
tures are processed in a competitive a manner, only patterns that activate a whole 
population of detectors with a similar velocity become salient and pass through this 
dynamic filter stage. The system has been tested on real overtaking sequences. The 
system is currently being tested with sequences taken from a high dynamic range cam-



era in different weather and light conditions to evaluate its robustness to low contrast 
and reflective mediums (such as water drops). 

  

  
Figure 4. Motion extraction: (a) Real Image, (b) Vertical edges of the image, (c) Rightward 
moving detected features, (d) Leftward moving detected features. 
 

                  
Figure 5. Velocity channels as dynamic filters. The left column shows rightward motion 
dynamic filters, and the right column shows leftward motion dynamic filters. 
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Figure 6. Filtered motion features: (a) rightward movement, (b) leftward movement. 

 

  
Figure 8. (a) QM of the detection along the sequence of Fig. 7; (b) Variance of the QM along 
the sequence of Fig. 7. 

 

  
Figure 9. Example of the system performance under adverse weather conditions (foggy and 
rainy). The sequence had been taken with a High Dynamic Range Camera. 

 

  
Figure 7. Overtaking car manually marked with a trust rectangle. In the first image the car is too 
far away to be correctly detected and the system fails. 
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