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   The rear-view mirror is unhelpful when an overtaking car is at the blind spot. This paper 
describes a simple algorithm that watches overtaking scenarios from the rear-view mirror 
point of view. Although motion extraction requires high computational resources and 
normally produces very noisy patterns in real sequences, if an overtaking vehicle approaches 
our car we detect it as forward moving features, while the rest of the patterns in the rear 
mirror visual field move backwards due to the ego-motion of our vehicle. Therefore motion 
provides useful cues to achieve an efficient segmentation in this application framework. In 
this paper we use the Reichardt motion detector to extract forward moving objects and we 
apply a rigid body motion rule to filter features that could belong to an overtaking vehicle. 
This scheme is used to efficiently segment overtaking cars, using the rear mirror visual field. 
This system alerts the driver of the host car when an overtaking car (approaching trajectory) is 
detected.  
 
 
1. INTRODUCTION  
       
   One of the most dangerous operations in driving is to overtake another vehicle. The driver’s 
attention is on his way forwards, and sometimes does not use the rear-view mirror or it is 
unhelpful because of the blind spot.  
   The automobile industry is very interested in introducing systems applied to driver 
assistance, (Franke, 2000; Handmann, 1998). Artificial vision systems would be very 
effective; however, current bio-inspired vision models (based on vertebrates’ visual systems) 
are limited and require high computational cost. Simpler models based on insects’ motion 
detection are being developed.  
   Flies are capable of exploiting optical flow by calculating the local image motion through 
Elementary Motion Detectors (EMDs) and integrate these signals (Krapp, 2000). Reichardt et 
al. developed a correlation based model of motion detection that captured the functionality of 
these neural circuits (Reichardt (1961)).  
   This paper describes the software implementation of an algorithm, based on EMDs, that 
watches overtaking scenarios: it detects the vehicle behind us, discriminates whether it is 
approaching or not and alerts us about its presence if necessary. Figure 1 illustrates the posed 
problem. The area (1) corresponds to the direct driver vision area; of course, the driver must 
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head leftwards to access this angle, losing the visual track of his way. The area (2) can be seen 
by the driver through the rear-view mirror. The area (3) is the one covered by the camera. A 
vehicle (a) could be seen by the camera and by the driver through the rear-view mirror. On the 
other hand, the vehicle (b) is positioned in the blind spot and therefore only the camera could 
track it. This blind spot area is the one we want to be monitored by the system.  
   This work is framed in the European Project ECOVISION (Ecovision, 2003). Its goal is to 
employ basic knowledge about biological vision systems to design a hybrid software-
hardware system to address the posed problem.  
   We have used real overtaking sequences (provided by Hella1, a partner in ECOVISION) 
that have been taken with a camera placed on the driver’s rear-view mirror. The sequences are 
composed 500 frames (20 seconds of recording) with a resolution of 288x384 pixels per 
frame and 256 grey levels. These sequences include different overtaking processes: slow 
overtaking, rapid overtaking, inverse overtaking, etc; and represent an initial test bed for this 
kind of application.  
   The detection algorithm follows different stages. The original sequence is pre-processed. 
We extract the edges in each frame. This pre-processed sequence is the input for the Reichardt 
motion detector, where we detect motion through a set of EMDs tuned to different velocities. 
At this point, each pixel has been detected moving with a velocity (module and direction). 
This saliency map from the Reichardt step is a noisy pattern. Therefore, dynamic filters 
modify the saliency map applying rigid body motion rules to characterize the motion of the 
vehicle. We also apply rules related with perspective correction and temporal coherency to 
finally segment the vehicle. All these stages will be explained in detail in the next sections. 
    

 
Figure 1.  Problem description.  

   
    
2. PRE-PROCESSING  
 
   It has been pointed out, through neurophysiology experiments, that object borders are the 
most important cues to extract the scene structure (Marr, 1982). Because of this, we start 
obtaining the spatial image edges. We have chosen a simple edge detector, Sobel gradient 
detector (Gonzalez, 1992), because we want to implement the proposed algorithm through 
specific hardware to be used in embedded systems, and this detector is able to provide 
acceptable real-time outputs to Reichardt detectors.  
   The obtained edges are processed to get them thinner. On the other hand, it will be enough 
to detect vertical edges because the scenes’ dominant movements are sidewards and with 
vertical edges these motion patterns become more explicit.  

                                                 
1 Dept. of predevelopment EE-11, Hella KG Hueck & Co., Germany, www.hella.de  



S. Mota, E. Ros, J. Díaz et al.                                       Motion driven segmentation scheme 
 

2 

   The output of this pre-processing stage is a sparse map composed of pixels with intensity 
different from zero when an edge is detected.  
   Figure 2a shows a real image from an overtaking sequence. After the pre-processing 
(vertical edges detection) we obtain a sparse map of pixels represented in Figure 2b. 
 

  
Figure 2. (a) Real image from an overtaking sequence; (b) Vertical edge detected in (a). 

 
 
3. REICHARDT DETECTOR AND VELOCITY TUNING  
 
   Figure 3 shows a simple Reichardt detector. When a motion pattern is detected, it is seen as 
a stimulus that reaches the two detector inputs (a and b) with a certain delay. 
   When the pattern moves in the preferred detector direction (Figure 3a) the temporal lag of 
the signals in both input channels is compensated by a delay (d). The output of both channels 
will be simultaneous when the delay is appropriated. In this way the two stimuli will be 
perfectly correlated. When the pattern moves in the opposite direction (Figure 3b) the delay 
increases the temporal lag between the two channel outputs. The output signals are less 
correlated and therefore the detector response will be weak. 
   Two sub-units, as the one described above, form the complete EMD. The EMD output will 
be the subtraction between the two sub-unit outputs; a positive final output indicates motion 
to the right, while a negative total output indicates motion to the left (Figure 3c).  
   A single EMD gives us information, mainly, about the motion direction of the detected 
features moving with its characteristic velocity (temporal delay associated to the EMD). 
However, if we apply a set of EMDs, each of them tuned to a different velocity, we can also 
obtain information about velocity module using a competitive system among the EMDs, i.e., 
we apply the set of EMDs to the same pixels and we extract its motion. The EMD that 
maximized the correlation is the one that detects the correct velocity (module and direction) 
of the studied pixel. We repeat the process for all the pixels along each frame. 
   The set of velocities that can be tuned is enough for the purpose of the application, i.e., we 
do not have problems related with the blindness of the system to some velocities. This is the 
case of the Australian tiger beetle (cincindela hudsoni) that is the most rapid running insect in 
the world (10 km/h). However, its motion detector cells respond only to slower speeds. In 
consequence, the Australian tiger beetle is blind when it runs, and to adjust its trajectory to 
the prey movement, it needs to stop from time to time (Gilbert, 1997). 
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   When we apply the Reichardt detector to the vertical edges we obtain the representation in 
Figure 4a (features moving to the right). The output of the Reichardt layer is composed of a 
cloud of points; each pixel is associated to a different velocity module, but the same direction 
(rightward direction). Figure 4a is very noisy; it shows also incorrect points, i.e., those points 
that belong to the landscape, and we know they must move leftward because of the ego-
motion of our vehicle. In order to reduce the noise and effectively segment the overtaking car 
we can use the velocity channels responses (Figure 4c) to dynamically filter these feature 
maps.  
 

 
Figure 3. Reichardt detector; (a) an edge moves in the preferred detector direction; (b) an 
edge moves in the opposite direction; (c) Complete Elementary Motion Detector.  

 
 
4. VELOCITY CHANNELS AS DYNAMIC FILTERS  
 
   We have a number of points that move at their detector characteristic velocity (Figure 4a). 
But how to localize the overtaking vehicle from this diffuse cloud of points?. 
   We apply a Rigid Body Motion (RBM) rule to segment the vehicle. If we only consider 
lateral transactions in a rigid body all points move at the same speed (module and direction). 
Therefore, if we detect a population of pixels that have associated the same speed, and all of 
them are in a limited area of the image, they track the vehicle or other rigid body.  
   However, this is not true in our sequences due to the perspective correction. In this case, 
points in the distant part of a rigid body seem to move more slowly than closer points. 
Because of this, it will be necessary to consider different velocities to synchronize both parts 
of a car. The back of the vehicle is far away and it seems to move slowly, therefore slow 
velocity detectors will respond to it, while the front of the vehicle is closer and it seems to 
move faster. Therefore, it is detected through rapid speed detectors. We need to cluster the 
velocities of the pixels into a range of velocities.  
   We introduce a new concept, the velocity channels, that allow us to apply the RBM rule.  
   We divide the set of detected velocities into groups of neighbouring velocities; and we also 
divide the image into a grid (Figure 4a illustrates the grid). The next step is to calculate the 
velocity channels.  
   The velocity channel Vi is the plot of the number of points tuned with velocities in a range 
of Vi for each square of the grid (receptive field). We will have as many velocity channels as 
velocity sub-sets we consider.  
   The central plot of Figure 4c represents the velocity channel Vi. This 3D figure shows the 
grid in the x-y plane, and z direction represents the number of points synchronized with 
velocity Vi for all the receptive fields in the grid. These velocity channels work as band pass 
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dynamic filters. Only the points of the saliency map tuned to the cluster velocities that 
produce the local maximum in each receptive field of the velocity channel plot are maintained 
active. The maximum corresponds to points where a rigid body motion induces coherent 
feature motion. Hence, the receptive field B (in the upper part of the Figure 4c) does not 
produce an output, i.e., the points belonging to this receptive field are filtered because the 
features of this receptive field moving leftwards (not shown in this plots) are dominant. 
However, the points tuned by Vi in receptive field A appear in the final output layer.  
 

 

  
Figure 4. (a) Rightward motion features detected by Reichardt stage; (b) Filtered rightward 
movement with dynamic filters; (c) Velocity channel Vi used as dynamic filter to segment the 
overtaking vehicle. 
 
   Finally, we obtain the results in Figure 4b when the full set of velocity channels are applied 
to the input map. 
   Moreover, if the detectors indicate that the vehicle moves rightwards, then it is approaching 
us, and this is the alerting situation we would like to distinguish. On the other hand, if the 
detectors indicate that the vehicle moves leftwards, then it is moving away, and it will not 
disturb us. We must remember that these figures represent only the rightward moving features 
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but we have also obtained similar results with ego-motion features (the leftward moving 
ones), and moving features in opposite directions compete in the saliency map. 
 
 
5. RESULTS  
    
   The results shown are very promising, but are they really good?. Now we are going to 
evaluate if the previous results really allow us to detect the overtaking vehicle and to warn the 
driver if necessary. 
   We have rounded the overtaking car in a square along the sequence. This process has been 
done manually, so we know the limits of the square in each frame (Figure 5 shows the result 
of this operation in a frame). The centre of the square for each frame is also known. 
   We calculate the centre of mass of all the points that are moving rightward in the dynamic 
filter output (the correspondent centre of mass have been represented in Figure 5 with a 
cross). 
   We also calculate the distance between this centre of mass and the centre of the square (this 
distance is normalized dividing by the size of the square in every frame). If the centre of mass 
is into the square this Quality Measure (QM) is below 1 and we are detecting the overtaking 
vehicle properly. In other cases the QM is higher than 1 and the noisy pattern is dominant and 
lead to a wrong estimation.  

 

 
Figure 5. Frame 110 from the overtaking car sequence. From this distance on the detection 
algorithm does not lose the trajectory of the overtaking vehicle; the overtaking car has 
manually rounded with a square. The centre of mass of rightward moving features is shown 
with a cross. 

 
   Taking as an example an overtaking sequence in which the car drives at a velocity of 90 
Km/h and the overtaking car at a contact velocity of 110 Km/h, Figure 6a shows the QM 
along the sequence. When the overtaking vehicle is small (it is far away) the detection has 
errors because of the sparse number of points, i.e., we detect few points from the car and the 
noisy features turn aside the centre of mass. But from a medium distance (from frame 110 
on), the vehicle is big enough (the features detected belong to the overtaking car) and the 
detection is done properly. In fact, accurate detection occurs when the overtaking vehicle 
begins to be dangerous for us. 
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   Figure 6b shows the variance of the QM along the sequence. We have calculated the 
variance of the QM in every 5 estimations. We can see a convergence to zero. In other words, 
from a point in the overtaking process forward the algorithm detects the overtaking vehicle 
without errors, and the system is able to warn us about the presence of this overtaking car, if 
necessary. In Figure 6a shows that approximately from frame 110 on (shown in Figure 5) the 
detecting is done accurately. 
   During the Reichardt stage we have used the correlation between single pixels. We have 
also repeated the process using a correlation between blocks of pixels (block matching). The 
only advantage of block matching is that the QM becomes below 1 earlier, and the 
convergence to zero is earlier too. 
   We have also tested the detection algorithm in adverse weather conditions (in a foggy and 
rainy day) where we have low contrast images and reflection artefacts (such as water drops). 
We have obtained similar results. 
 

  
Figure 6. (a) QM of the detection along the slow overtaking sequence; (b) Variance of the 
QM along the sequence. 

 
 
6. CONCLUSIONS  
 
   The present contribution describes a motion processing system to be used as a blind spot 
monitor. It is intended to detect overtaking cars. The front-end of the system uses Reichardt 
motion detectors. We define dynamic filters based on motion patterns of the image that seem 
to correspond to moving objects. These dynamic filters effectively clean noisy patterns and 
help to segment the overtaking vehicle (if present). This filtering technique is a robust scheme 
because it is only based on a rigid body motion rule. It detects areas within a population of 
features moving coherently (with the same velocity and direction), being good candidates for 
a moving rigid body, and these motion patterns compete with opposite direction motion 
features. In this way, the moving features are processed in a competitive manner, only 
patterns that activate a whole population of detectors with a similar velocity become salient 
and pass through this dynamic filter stage. The system has been tested on real overtaking 
sequences. The system is being tested with sequences taken from a high dynamic range 
camera in different weather light conditions to evaluate its robustness to low contrast and 
reflection artefacts (such as water drops). 
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