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Abstract

A crucial issue when applying topographic maps for clustering purposes is how to
select the map’s overall degree of smoothness. In this paper, we develop a new strategy
for optimally smoothing, by a common scale factor, the density estimates generated
by Gaussian kernel-based topographic maps. We also introduce a new representation
structure for images of shapes, and a new metric for clustering them. These elements
are incorporated into a hierarchical, density-based clustering procedure. As an appli-
cation, we consider the clustering of shapes of marine animals taken from the SQUID
image database. The results are compared to those obtained with the CSS retrieval
system developed by Mokhtarian and co-workers, and with the more familiar Euclidean

distance-based clustering metric.
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1 Introduction

The visualization of clusters in high-dimensional spaces with topographic maps has recently
attracted the attention of the data mining community (Deboeck, 1998; Cottrell et al., 1999;
Lagus and Kaski, 1999, Vesanto, 1999; Vesanto and Alhoniemi, 2000; Himberg et al., 2001,
and references therein). Topographic maps can be regarded as discrete lattice-based approxi-
mations to non-linear data manifolds, and, in this way, used for projecting and visualizing the

data. What is less evident from the literature, is that this required a shift in the clustering



paradigm. Originally, topographic maps, such as the popular Self-Organizing Map (SOM)
(Kohonen, 1982, 1984, 1995), were used for similarity-based clustering: the converged neuron
weights correspond to the centers of the individual clusters, and the Voronoi regions defined
by them correspond to the cluster regions. Data points are assigned to the neurons for which
the Euclidean distances to their weights are minimal (Winner-Take-All neurons)!. However,
this requires prior knowledge of the number of clusters in the data set, which makes this
approach less suited for an exploratory data analysis. Furthermore, similarity-based cluster-
ing assumes, albeit often tacitly, that the cluster shape is hyperspherical, at least when the
Euclidean distance metric is used. The shape of a real-world cluster may not comply with
this assumption.

There is another way by which clustering can be performed with topographic maps, and which
is deemed more suitable for exploratory data analysis. The distribution of the converged
neuron weights can be regarded as a non-parametric estimate of the data density. The high
density regions are then hypothesized to correspond to individual clusters. This approach
is called density-based clustering. Unfortunately, the weight density achieved with the SOM
algorithm at convergence is not a linear function of the data density (Ritter, 1991, Dersch
and Tavan, 1995), so that the quality of the density estimate is often inferior to what can
be expected from other techniques, including several topographic map formation algorithms
(for a review, see Van Hulle, 2000a). One way to improve the density estimation capabilities
is to employ neurons with kernel-based activation functions, such as Gaussians, instead of
Winner-Take-All functions. Several versions of such kernel-based topographic maps, as they
are called, have been suggested in the literature, together with a series of learning algorithms
for training them (for an overview, see Van Hulle, 2002a). In an attempt not to assume
prior knowledge of the number of clusters, and since the weight distribution achieved at
convergence is related to the input density, several authors have developed ways of visualizing
clusters in the input density using topographic maps (see Kohonen, 1995, p. 117). A simple
technique, called gray level clustering, represents the relative distances between the weights
of neighboring neurons, by gray scales.

There are two key issues we have to deal with when using topographic maps for density-
based clustering purposes: topological defects and optimal smoothing of the density estimate.
Indeed, when the topographic map contains topological defects — neighboring data points are
not mapped onto neighboring neurons — a contiguous cluster could become split into separate

clusters. In previous contributions (Van Hulle, 2000b; Van Hulle and Gautama, 2002b),

1In fact, when used in batch mode, the SOM algorithm has an intimate connection with the classic k-means

clustering algorithm (MacQueen, 1967; Krishnaiah and Kanal, 1982) (see also Kohonen, 1995, p. 127).



also to this journal, we have introduced an algorithm that monitors the degree of topology
preservation achieved by kernel-based maps during learning. As a real-world application,
we considered the identification of musical instruments, and the notes played by them, by
means of a hierarchical clustering analysis, starting from the music signal’s spectrogram.
Topographic map formation was achieved with the kernel-based Maximum Entropy learning
Rule (kMER), and it was shown to yield an equiprobabilistic map of heteroscedastic Gaussian
density mixtures (Van Hulle, 1998, 2000a).

In this paper, we will concentrate on the second issue and develop a new technique for
determining the overall degree of smoothness of the density estimate by scaling the widths
of all kernels by a common factor. As a real-world application, we will consider the image
database of contours of marine animals, compiled by Mokhtarian and co-workers (Mokhtarian
et al., 1996), and perform a hierarchical clustering in order to group contours that show
similar global shapes. We will introduce for this purpose a new clustering metric for assigning
contours to clusters (“labeling”). The metric is based on outlier detection.

The paper is organized as follows. First, we briefly re-introduce the kMER learning scheme
that we will use for training the kernel-based topographic maps. Then, in section 3, we show
how density estimation can be performed with these maps, introduce the issue of optimal
smoothness, and our solution for determining it. In section 4, we describe the image database
of marine animal contours, introduce our contour representation, and formulate the clustering
problem. In section 5, we detail our hierarchical clustering procedure as it is applied to the
image database. We also introduce here our new labeling method based on outlier detection.
Finally, we discuss our results and compare them to Mokhtarian’s, and also to those obtained

by using the more familiar Euclidean distance-based metric.

2 Kernel-based Maximum Entropy Learning Rule

Consider a lattice A, with a regular and fixed topology, of arbitrary dimensionality d4,
in a d-dimensional input space V' C R¢. To each of the N positions in the lattice corre-
sponds a formal neuron ¢ which possesses, in addition to the traditional weight vector w;,
a (hyper)spherical activation region S;, called receptive field (RF) region, with radius o,
in V-space (Fig. 1A). The neural activation state is represented by the code membership

function:

1 ifves;
Ii(v) = . (1)
0 ifvégs;,



with v € V. As the definition of S; suggests, several neurons may be active for a given input
v. Hence, we need an alternative definition of competitive learning (Van Hulle, 1998). Define

=; as the fuzzy code membership function of neuron i:

1;(v .
Ei(v) = %, Vi€ A, (2)
so that 0 < Ej(v) < land ), Ei(v) = 1.
With the kernel-based Maximum Entropy learning Rule (kMER), the weights w; are adapted
so as to produce a topology-preserving mapping; the radii o; are adapted so as to produce a
lattice of which the neurons have an equal probability to be active (equiprobabilistic map),

i.e., P(I;(v) = 1) = &,Vi, with p a scale factor. The neuron weights w; are updated as

follows (Van Hulle, 1998):

Aw; = nZA(i,j,O’A)E]'(VH)SgTL(VH_Wi)a (3)
JEA
and their radii o;:
L= Prt (v B — T (B ;
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with p, 2 J\’;—J_Vp, Sgn(x) the sign function acting componentwise, and A(.) the usual neigh-
borhood function, e.g., a Gaussian, of which the range oa is gradually decreased during

learning:

t
O) = 0x,0€Xp <—‘20')\70 ’Yov) , (5)
tmax

where o o is the initial neighborhood range, and yov is a parameter that controls the slope
of the cooling scheme (“gain”). The combined effect of the radius and weight update rules

is illustrated in Fig. 1B.

3 Non-parametric Density Estimation and
Optimal Smoothness

With kMER, in addition to the centers, the radii of the .S; are individually adapted such
that they are activated with equal probabilities, the connection with variable kernel density
estimation using radially symmetrical Gaussian kernels can be made easily. Hence, we obtain

the following heteroscedastic Gaussian density model with equal mixtures:

N vi—wi|®
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Figure 1: Kernel-based maximum entropy learning. (A) Neuron 7 has a localized receptive
field K(v — w;,0;), centered at w; in input space V C R?¢. The intersection of K with the
present threshold 7; defines a region S;, with radius oy, also in V-space. The present input
v € V is indicated by the black dot and falls outside S;. (B) Receptive field region update.
The arrow indicates the update of the RF center w;, given the present input v (not to scale);
the dashed circles indicate the updated RF regions S; and S;. For clarity’s sake, the range
of the neighborhood function is assumed to have vanished so that w; is not updated. The

shaded area indicates the overlap between S; and S; before the update.

since the kernels are active with the same probability, with ps a factor controlling the overall
degree of smoothness. The question is now: how to choose pg?

Contrary to the univariate case, only very few methods are available for determining the opti-
mal smoothing factor in multivariate density estimation. For example, the method described
by Luc Devroye, which has been extensively tested on univariate examples (Devroye, 1997),
is not readily extendible to the multivariate case. The methods that have been described
are twofold. A first class of methods is based on, or is an extension of the Least-Squares
Cross-Validation (LSCV) method (for an overview, see Sain et al., 1994). However, with
these methods, a (Gaussian) a kernel needs to be positioned at every data point, whereas in
our case, there are typically much more data points than kernels. A second class of methods
adopts a binning approach, and positions a kernel at every bin’s center (for an overview,
see Hall and Wand, 1996). The applicability of these methods is limited to low-dimensional
cases, exactly due to the required binning of the input space. Finally, one should note that
both classes of methods are iterative procedures for which the optimal smoothing factors
need to be derived by an exhaustive search method such as grid search.

We suggest here a new method for determining the optimal smoothing factor psopr. We

locally match the data density contained in a d-dimensional hypersphere S;, centered at w;,



and with radius o, to the density generated by a d-dimensional Gaussian with center w; and
radius pso;. For sufficiently high input dimensions, d > 10, the distribution of the distances
of the data points to w; becomes approximately Gaussian, with mean pso;v/d and standard
deviation psai/\/i This can be shown as follows.

Assume a d-dimensional circularly symmetrical Gaussian with mean [g;], j = 1,...,d, and
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standard deviation o. The squared Euclidean distance to the center z = Dy
v = [v;], is known to obey the chi-squared distribution with § = 2 and o = % degrees of

freedom (Weisstein, 1999):

d
z 5—1
o2

-exp (= g.3)
Py2 X)) = s 7
o) = E M
for 0 < z < oo, and with T'(.) the gamma distribution. Hence, the Euclidean distance
to the center becomes: p(r) = 2rp,2(r?), with r = \/z, following the fundamental law

of probabilities. After some algebraic manipulations, we can write the distribution of the

Fuclidean distances as follows:

2(5)"" exp (—553)

p(r) = (8)

25T(5)
The distribution is plotted in Fig. 2 (thick and thin continuous lines). The mean of r equals
oD (4L . . . . .
= %, which can be approximated as v/do, for d large, using the approximation

for the ratio of the gamma functions by Graham and co-workers (Graham et al., 1994); the
second moment around zero equals do?. The distribution p(r) seem to quickly approach a
g

Gaussian with mean v/do and standard deviation 7 when d increases. This can be shown

formally by calculating the skewness and Fisher kurtosis:

skewness = E(r —p,)° = pr(=2d + 1+ 2p17), (9)
~ i E(r—p)t o d?+d(2+2p7) —4p -3
Fisher kurtosis = EE(r)? = 1i)? —3= (= 0)? —-3. (10)

We can verify that the skewness and Fisher kurtosis are equal to 0.116 and 3.70 10=2 for
d =75, and 8.07 10~2 and 8.71 103 for d = 10, respectively. They are plotted as a function
of d in Fig. 2B. Hence, we can safely state that, for d > 10, the distance distribution closely
resembles a Gaussian.

We now suggest to determine the optimal degree of smoothing as the one for which the mean

distance to the center matches the Gaussian prediction (averaged over all neurons 7):

_ Ly v will s, )
Ps,opt = N — O'Z'\/E .

Note that, unlike traditional methods, eq. (11), does not require an iterative procedure. In

order to test our method, we consider two types of input distributions: a d-dimensional
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Figure 2: (A) Distribution functions of the Euclidean distance from the center of a unit-
variance, radially-symmetrical Gaussian, parameterized with respect to the dimensionality
d. The functions are plotted for d = 1,...,10 (from left to right); the thick line corresponds
to the d = 1 case. (B) Skewness (continuous line) and Fisher kurtosis (dashed line) of the

distance distributions as a function of the dimensionality d.

Gaussian N (0, 1), and a d-dimensional uniform distribution [—1, 1]¢. We train a 5 x 5 lattice
with kMER during #p,ax = 2000 time steps, with » = 0.001 and p, = 2. The results for
our method are shown in Fig. 3A and B, for the Gaussian and uniform input distributions,
respectively, together with the results obtained for the LSCV method, and the theoretically
optimal results which are found by minimizing the MSE between the estimated and actual
pdf. We clearly observe that our method outperforms the LSCV method, in particular in the

high-dimensional case.

4 Image Database

We will train our topographic maps on patterns taken from an image database with the pur-
pose of detecting groups of similar images. In particular, we will consider the Shape Queries
Using Image Databases (SQUID) (Mokhtarian et al., 1996), which consists of M = 1100 im-
ages of contours of marine animals, with a large variety of shapes. A typical set of contours
is shown in Fig. 4. One can immediately see that the contours display similarities in overall

shape, tails and fins.

Since the contours are described by a varying number of points (mean 692.8 and standard

deviation 205.5), we resample them to 256 points, using linear interpolation. One such result
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Figure 3: Optimal degrees of smoothness obtained for a Gaussian- (A) and uniform input
distribution (B), as a function of input dimensionality d, using our method eq. (11) (thick
continuous lines) and the LSCV method (thin continuous lines). The theoretically optimal

results (dashed lines) are also shown.

is shown in Fig. 5. Afterwards, we translate every contour such that its center of mass
is positioned at (0,0), and compute its Fourier transform. Only the amplitude spectrum
1s retained, which is further normalized so that a translation-, rotation-, and scale-invariant
representation of the contour is obtained. The resulting spectra are coded by 256-dimensional
vectors. An example i1s shown in Fig. 6. Note that this representation is also invariant to
the direction in which the contour is traversed (clock- or counter-clockwise), since this only
effects the phase, but not the amplitude.

The idea is now to perform a hierarchical clustering of these Fourier-transformed contours in

order to detect groups of contours with similar global shapes.

5 Hierarchical Clustering Procedure

We perform a hierarchical density-based clustering analysis of M = 1100 normalized ampli-
tude spectra, which have been obtained as explained in the previous section. The clustering
analysis proceeds as follows. First, the probability density function (pdf) underlying the data
is estimated with our kernel-based topographic map. Clusters correspond to high density
peaks in the pdf-estimate and are detected without a priori knowledge of their number. The
data set is segmented into subsets by classifying each contour to its corresponding cluster,
after which the next level of the clustering analysis is performed on every such subset (hier-

archical clustering).
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Figure 4: Examples of marine animal contours in the SQUID database. Numbers above the

contours refer to the indices in the original database.
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Figure 5: Normalized contour of marine animal 633, obtained by resampling and subtracting

the mean of the original contour in the SQUID database.

5.1 Topographic Map Formation

We train our lattices with kMER, eqgs. (3,4), using a Gaussian neighborhood function A(.)
and the neighborhood “cooling” scheme given in eq. (5). The initial neighborhood range
o0 is set equal to @ The “gain” yov in eq. (5) is optimized for, in an iterative manner,
using a monitoring algorithm that tries to minimize the variability in the degree of overlap
between the neurons’ RF regions (Overlap Variability, OV). The lattice is more likely to be
disentangled when the OV is minimal. For more details, we refer to (Van Hulle, 2000b; Van
Hulle and Gautama, 2002b).

A hierarchy of topographic maps is developed with which a hierarchical clustering analysis
is performed (see further). For the root and Level I nodes in the clustering hierarchy, we use

7 x T lattices, and smaller, 5 x 5 lattices for the other nodes. If no clusters are detected for

the smaller maps, and if the number of contours in the training set exceeds 49, we retrain
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Figure 6: Normalized amplitude spectrum corresponding to Fig. 5.

the map but now using a 7 x 7 lattice (see Discussion).

5.2 Density Estimation

We construct a kernel-based density estimate for each topographic map developed in the

previous stage, and determine the optimal smoothing factor ps opt, as explained in Section 3.

5.3 Clustering and Labeling the Topographic Map

We apply the discrete hill-climbing algorithm described in (Van Hulle, 2000a,b). The algo-
rithm determines the number ¢, and the location of the local density peaks in the pdfestimate
eq. (6), which is evaluated only at the neurons’ weights, that are not surmounted by higher
peaks in a range of k nearest neurons. The number of clusters is determined and plotted as
a function of k, in the valid range £ =1... % As the final number of clusters, we take the
number that corresponds to the longest plateau in the plot. The plateau for ¢ = 1 is rejected,
since this is a degenerate case. Figure TA shows an example plot, namely that found for the
root node of the cluster hierarchy. Finally, the neurons in the lattice are labeled according
to which local density peak they belong. For this we take the clustering result for £ at the
beginning of the plateau. Each neuron receives a greyscale according to which cluster it
belongs to. This results in a cluster map, an example of which is shown in Fig. 7B, for the

root node in the cluster hierarchy.
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Figure 7: (A) Number of clusters that are detected as a function of the number of nearest
neurons, k, in the discrete hill-climbing algorithm for the root node. The longest plateau is
found for three clusters, starting at £ = 5. (B) Cluster map for the root node corresponding

to k =5.

5.4 Labeling the Training Set

We now need a metric for assigning input patters (i.e., contour amplitude spectra) to clusters.
We opt for one based on outlier detection, since outlier probabilities are one-dimensional
quantities. To each cluster corresponds a (cluster-conditional) pdfestimate. An input pattern
is classified to the cluster for which the probability of being an outlier is minimal (i.e., an
outlier with respect to the cluster’s pdf estimate). There is, however, a problem due to the
high dimensionality of our data: the Gaussian kernels cannot be evaluated directly, since this
leads to numerical instabilities (see the factor of in eq. (6)). We have, therefore, developed
the following new method.

Rather than evaluating the high-dimensional Gaussians directly, we evaluate the one-dimen-
sional distributions that describe the distances to the kernel centers, which are approximately

PsT:

Gaussian for d > 10, with means psai\/g and standard deviation 7

(see section 3). By ob-
serving the corresponding cumulative distribution, we compute the cluster outlier probability
for cluster n, p,, using:

pn(v“):% 3 (1+erf(”"”_Wi”_p&om‘”ﬂ)), (12)

o
i€cluster n ps,opt t

where N, is the number of neurons that belong to cluster n. Input pattern v* is classified
to the cluster for which the outlier probability, p,, is the smallest. We apply this method,

rather than a straightforward computation of the cluster probability, since the latter yields



87 92 111 112 119

124 150 574 775 776

7 781 782 783 784 T
_m i = =_ > < o=
978 1028

=
Figure 8: Contours that are classified to a Level 2 cluster ([2 1]) (A), and a Lewvel 7 cluster
([0010012]) (B). The numbers above the contours refer to the indices in the original database.

numerically unstable results for higher dimensions due to the normalization term for unit-
volume Gaussians. Furthermore, it offers the advantage over a Euclidean distance-based one,
where an input pattern receives the same label as its nearest neuron (as is used in Gautama
and Van Hulle, 2000), since it takes into account the width of the clusters. However, since
in high-dimensional spaces the erf function is steep, the case where p, = 1 for all clusters
can occur and, hence, a tie-breaking strategy is needed. We opt for the smallest Euclidean

distance to the nearest neuron as a tie-break.

5.5 Hierarchical Clustering

The set of input patterns on which a given node in the hierarchy is trained is segmented into
subsets according to the patterns’s classification labels obtained in the previous step. The
clustering analysis is then re-applied to each subset. The procedure terminates, and produces
a leaf node in the clustering hierarchy, if the discrete hill-climbing algorithm does not yield
a plateau, or if the number of input patterns applied to a given node does not exceed the
number of neurons in the node’s topographic map.

In total, we have detected 65 clusters corresponding to leaf nodes in the clustering hierarchy
(the deepest leaf node is situated at Level 10, with the root node being at Level 0). The first
cluster is found at Level 2 and is shown in Fig. 8. Possibly, this cluster is found at an early
level because: 1) the overall shape is very different from the others, and 2) there are sufficient
stmilar contours in the database to define a cluster at this level.

Note that the labeling of the data occurs in a hierarchical manner: every data point “tra-
verses” the tree until it arrives at a leaf node. An alternative method would be to construct

a partial pdf estimate for every leaf node in the hierarchy. If every cluster is considered
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equiprobable, a contour could be classified to the corresponding pdf estimate for which the
outlier probability eq. (12) is the smallest. This would yield different results for data points
that lie in the border region between clusters: the pdf estimates become more detailed at

deeper levels, due to which the boundaries can shift slightly.

6 Discussion

6.1 Shape Clustering

In the literature, several clustering-based procedures are described for constructing represen-
tation structures for sets of contours (Dubuission et al., 1996; Lee and Street, 2000). These
procedures assume prior knowledge of the number of clusters in the dataset. In a different
context, namely that of querying large databases for contours that are similar to the target,
various shape similarity metrics have been suggested (Mokhtarian, 1995; Mokhtarian et al.,
1996; Niblack et al., 1993). We have introduced in this article a novel way of constructing
a representation structure for a set of contours, which can be used for shape classification
purposes. The advantage is that it uses a data model which, in general, greatly facilitates

data handling. Our procedure relies on a hierarchical, density-based clustering approach.

6.2 Shape Clustering with Our Approach

There are two aspects about the shapes in the SQUID-database that make it hard to cluster
them. First, there is the wide variety in shapes, due to which one would expect a lot of clusters
to be detected. Second, the number of patterns that defines a single cluster is very small,
which makes kMER-training more difficult (few training patterns and high dimensionality).
For example, sometimes no clusters were detected in relatively large subsets (M > 49 input
patterns), where clusters would be expected. In these cases, the estimated pdfis not detailed

enough and is too smooth to indicate the presence of clusters. Indeed, since neuron i is

activated by M; = J@r_ﬂg, samples in the kMER-algorithm (Van Hulle, 1998), several clusters
are modeled by a single kernel if the number of patterns belonging to one cluster (which
is not known a prior:) is less than M;. Thus, the resulting kernels are too wide to yield
distinct local peaks in the pdf-estimate. Therefore, we retrain the kMER-algorithm using a
7 x T lattice if no clusters are detected at a given node, and only terminate the analysis for
that node if the latter map does not yield any clusters either. In this way, a more detailed
pdf estimate can be developed if necessary. This was the case for 4 nodes in our clustering

hierarchy. The converse situation has not posed any problems: the kMER~algorithm and the
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subsequent pdf estimation has proven to be robust even when there are very few contours in
the training set: with as few as 25 contours, we have trained 5 x 5 topographic maps, that
still showed the presence of clusters.

As a measure of confidence with which a given contour is classified at a certain level in the
hierarchy, we compute the difference between the lowest and second-lowest outlier probability
taken over the subclusters of the same parent cluster (i.e., “sister”-clusters), which will be
equal to 1 if the contour is classified with 100% certainty, and 0 if both probabilities are
the same, possibly when the contour is a definite outlier for both clusters and where the
Euclidean distance metric has been used as a tie-break. We have computed this for the 65
leaf nodes in the clustering hierarchy. The mean classification confidence is 0.121. This is a
relatively small number, possibly due to the high dimensionality of the data, d = 256, and
the relatively small number of important dimensions: a principal component analysis shows
that the cumulative eigenvalue plot reaches 99% for 20 principal components. This means
that most of the variance 1s concentrated in a subspace, which has its implications on the
computation of the outlier probability, eq. (12), and possibly even on the computation of the
optimal degree of smoothing, eq. (11).

Figure 9 shows two example clusters (Level 4 in Fig. 9A and Level 5 in Fig. 9B). For one
contour in every cluster, which would intuitively be considered an outlier (the framed ones in
Fig. 9), the classification confidences are computed. The classification confidence for contour
780 in Fig. 9A is 6.5 x 107° (the mean confidence for this cluster is 0.121). The Euclidean
distances to the nearest neurons in the best and second-best clusters are 0.110 and 0.212,
respectively (mean distances between patterns and nearest neurons is 0.050). The large
distances indicate that these contours are indeed located “in between” the sister clusters.
The second case (Fig. 9B) shows a similar situation. Contour 543 (in cluster [0 0 1 0 1])
has a zero classification confidence (the Euclidean distance metric has been used as a tie-
break), and is, thus, an outlier to all “sister”-clusters, i.e., those coming from [0 0 1 0]. The
mean classification confidence for this cluster is 0.077. The Euclidean distances between this
contour and the nearest neurons in the two sister clusters are 0.174 and 0.228 (the mean

distance between patterns belonging to this cluster and the nearest neuron is 0.068).

6.3 Comparison with Mokhtarian’s Approach

Although there is no objective way of quantifying the clustering performance, since the
database i1s unlabeled, we compare our results to those obtained with the Curvature Scale

Space (CSS) retrieval system developed by Mokhtarian and co-workers (Mokhtarian et al.,
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Figure 9: Contours that are classified to a Level 4 cluster [1 0 1 2] (A), and a Level 5 cluster

[0010 1] (B). The target contours are indicated by a rectangle.

1996). Examples of their results are shown in Fig. 10A and D: the upper left contour corre-
sponds to the “target”, and the results are ordered by their measure of similarity, downwards,
then rightwards. The clusters that we find, and that contain the target contour, are shown
in Fig. 10B and E, respectively. In the first example (Fig. 10A and B), there is a good
correspondence between the two sets: all but one contour that have been found by the CSS
retrieval system are contained in the corresponding cluster of our analysis. However, in the
second case, the two sets are disjoint (except for the target contour). This is due to the dif-
ference in similarity criteria. The CSS retrieval system takes into account only the positions
of the topological landmarks (with zero-curvature), and not so much the fine shape details.
The set in Fig. 10D, e.g., possibly groups contours with seven points with zero-curvature
(two for the tail, four fins and one for the snout), whereas the Fourier representation we use
takes into account the global shape. However, we do not claim that the Fourier descriptor
is better suited for representing shapes than the topological landmark-based descriptor used

by the CSS retrieval system.

6.4 Comparison with Euclidean Distance-based Approach

Finally, we can also perform our clustering analysis using a criterion based on Euclidean
distance, instead of outlier detection. This results in a different clustering hierarchy (only
53 nodes, with the deepest node in Level 7). The clusters for target contours 262 and 102

are shown in Fig. 10C and F, respectively. It seems that the results are now inferior, since
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both clusters contain mixtures of shapes. However, again, since the database is unlabeled,

we cannot objectively say which method yields the best results.

7 Conclusion

We have introduced a new way to optimally smooth, by a common scale factor, heteroscedas-
tic Gaussian density models with equal mixtures. In addition, we have introduced a new way
to build a representation structure for images of shapes, based on the Fourier representation
of their contours, and a new method for labeling samples, based on outlier detection. All
this has been incorporated into a hierarchical clustering procedure that relies on kernel-based
topographic maps. The clustering procedure has been applied to the SQUID image database
(Mokhtarian et al., 1996). The advantage of our approach is that the number of shape clus-
ters is obtained without prior knowledge, and that a hierarchy of shapes is generated. Finally,
we have compared our clustering results to those obtained with the CSS retrieval system de-
veloped by Mokhtarian and co-workers (Mokhtarian, 1995; Mokhtarian et al., 1996), as well

as to those obtained when using the Fuclidean distance metric.
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Figure 10: The contours that best match the target contours 262 and 102 (framed contours), obtained with three different methods (columns).
A.D) Best matching results obtained with the CSS retrieval system of Mokhtarian and co-workers, when querying the database with the upper
left contour (indices 262 and 102, redrawn from Fig. 4a and 4b in Mokhtarian et al., 1996). The contours are ordered by decreasing similarity,
downwards, then rightwards. B,E) The corresponding clusters found with our hierarchical clustering procedure. C,F) The clusters found with

the Euclidean distance metric.
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