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Abstract. Real-world motion field patterns contain intrinsic statistic
properties that allow to define Gestalts as groups of pixels sharing the
same motion property. By checking the presence of such Gestalts in
optic flow fields we can make their interpretation more confident. We
propose a context-sensitive recurrent filter capable of evidencing motion
Gestalts corresponding to 1st-order elementary flow components (EFCs).
A Gestalt emerges from a noisy flow as a solution of an iterative process
of spatially interacting nodes that correlates the properties of the visual
context with that of a structural model of the Gestalt. By proper spec-
ification of the interconnection scheme, the approach can be straight-
forwardly extended to model any type of multimodal spatio-temporal
relationships (i.e., multimodal spatiotemporal context).

1 Introduction

Perception can be viewed as an inference process to gather properties of real-
world, or distal, stimuli (e.g., an object in space) given the observations of prox-
imal stimuli (e.g., the object’s retinal image). The distinction between proximal
stimulus and distal stimulus touches on something fundamental to sensory pro-
cesses and perception. The proximal stimulus, not the distal stimulus, actually
sets the receptors’ responses in motion. Considering the ill posedness of such
inverse problem, one should include a priori constraints to reduce the dimension
of the allowable solutions, or, in other terms, to reduce the uncertainty on visual
measures. These considerations apply both if one tackles the problem of per-
ceptual interpretation as a whole, and if one considers the confidence on single
feature measurements. Each measure of an observable property of the stimulus
is indeed affected by an uncertainty that can be removed, or, better, reduced
by making use of context information. Early cognitive vision can be related to
that segment of perceptual vision that takes care of reducing the uncertainty
on visual measures by capturing coherent properties (Gestalts) over large, over-
lapping, retinal locations, a step that precedes the true understanding of the
scene.
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In this perspective, we formulate a probabilistic, model-based approach to im-
age motion analysis, which capture, in each local neighborhood, coherent motion
properties to obtain context-based regularized patch motion estimation. Specif-
ically, given motion information represented by an optic flow field, we want to
recognize if a group of velocity vectors belongs to a specific pattern, on the basis
of their relationships in a spatial neighborhood. Casting the problem as a gen-
eralized Kalman filter (KF)[1], the detection occurs through a spatial recurrent
filter that checks the consistency between the spatial structural properties of the
input flow field pattern and a structural rule expressed by the process equation
of the KF. Due to its recurrent formulation, KF appears particularly promis-
ing to design context-sensitive filters (CSFs) that mimic recurrent cortical-like
interconnection architectures.

2 Kalman-based perceptual inference

In general, KF represents a recursive solution to an inverse problem of determing
the distal stimulus based on the proximal stimulus, in case we assume: (1) a
stochastic version of the regularization theory involving Bayes’ rule, (2) Marko-
vianity, and (3) linearity and Gaussian normal densities. The first condition can
be motivated by the fact that the a priori contraints necessary to regularize the
solution can be described in probabilistic terms. Bayes’ rule allows the compu-
tation of the a posteriory probability as p(x|y) = p(y|x)p(x)/p(y), where p(x)
is the a priori probability densities for the distal stimulus and represents a pri-

ori knowledge about the visual scene; p(y|x) is the likelihood function for x.
This function represents the transformation from the distal to proximal stim-
ulus and includes information about noise in the proximal stimulus. Finally,
p(y) is the probability of obtaining the proximal stimulus. The inverse problem
of determining the distal stimulus can be solved by finding x̂ that maximizes
the a posteriori probability, p(x|y). Such x̂ is called a maximum a posteriori
(MAP) estimator. Although the Bayesian framework is more general than the
standard regularization, there exist a relationship between the deterministic and
stochastic methods of solving inverse problems. Under the assumption of nor-
mal probability densities, maximizing the a posteriory probability p(x|y) is,
indeed, equivalent to minimizing the Tikhonov functional. The second concept,
the Markovianity, captures the step-by-step local nature of the interactions in
a cooperative system, and makes possible Kalman recursion, by allowing to ex-
press global properties of the state in terms of its local properties. Under these
hypotheses the conditional probability that the system is in a particular state at
any time is determined by the distribution of states at its immediately preced-
ing time. That is, the conditional distribution of that states of a system given
the present and past distributions depends only upon the present. Specifically,
considering the visual signal as a random field, the Markovianity hypothesis im-
plies that the joint probability distribution of that random field has associated
positive-definite, translational invariant conditional probabilities that are spa-
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tially Markovian (cf. Markov Random Fields). The third assumption represents
the necessary conditions to achieve the exact, analytical solution of the KF.

3 Local motion Gestalts

Local spatial features around a given location of a flow field, can be of two types:
(1) the average flow velocity at that location, and (2) the structure of the local
variation in a the neighborhood of that locality [2]. The former relates to the
smoothness constraint or structural uniformity. The latter relates to linearity

constraint or structural gradients (linear deformations). Velocity gradients pro-
vide important cues about the 3-D layout of the visual scene. On a local scale,
velocity gradients caused by the motion of objects provide perception of their
3-D structure (structure from motion and motion segmentation), whereas, on
a global scale, they specify the observer’s position in the world, and his/her
heading.

Formally, first-order deformations can be described by a 2×2 velocity gradient
tensor

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (1)

Hence, if x = (x, y) is a point in a spatial image domain, the linear proper-
ties of a motion field v(x, y) = (vx, vy) around the point x0 = (x0, y0) can be
characterized by a Taylor expansion, truncated at the first order:

v = v̄ + T̄x (2)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By breaking down the tensor in

its dyadic components, the motion field can be locally described through 2-D
maps representing cardinal EFCs:
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(3)

where αx : (x, y) 7→ (1, 0), αy : (x, y) 7→ (0, 1) are pure translations and
dx

x : (x, y) 7→ (x, 0), dx
y : (x, y) 7→ (y, 0), dy

x : (x, y) 7→ (0, x), dy
y : (x, y) 7→

(0, y) represent cardinal deformations, basis of the linear deformation space. In
this work, we consider two different classes of deformation templates (opponent
and non-opponent), each characterized by two gradient types (stretching and
shearing), see Fig. 1. More complex local flow descriptors such as the divergence,
the curl and the two components of shear, can be straightforwardly obtained by
linear combination of such basic templates.

4 The context sensitive filter

For each spatial position (i, j) and at time step k, let us assume the optic flow
ṽ(i, j)[k] as the corrupted measure of the actual velocity field v(i, j)[k]. For
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Fig. 1. Basic gradient type Gestalts considered. In stretching-type components (a,c)
velocity varies along the direction of motion; in shearing-type components (b,d) velocity
gradient is oriented perpendicularly to the direction of motion. Non-opponent patterns
are obtained from the opponent ones by a linear combination of pure tranlations and
cardinal deformations: di

j +mαi, where m is a proper positive scalar constant.

the sake of notation, we drop the spatial indices (i, j) to indicate the vector
that represents the whole spatial distribution of a given variable. The difference
between these two variables can be represented as a noise term ε(i, j)[k]:

ṽ[k] = v[k] + ε[k] . (4)

Due to the intrinsic noise of the nervous system, the neural representation of the
optic flow v[k] can be expressed by a measurement equation:

v[k] = ṽ[k] + n1[k] = v[k] + ε[k] + n1[k] (5)

where n1 represents the uncertainty associated with a neuron’s response. The
Gestalt is formalized through a process equation:

v[k] = Φ[k, k − 1]v[k − 1] + n2[k − 1] + s . (6)

The state transition matrix Φ is de facto a spatial interconnection matrix that
implements a specific Gestalt rule (i.e., a specific EFC); s is a constant driv-
ing input; n2 represents the process uncertainty. The space spanned by the
observations v[1], v[2],. . . , v[k − 1] is denoted by Vk−1 and represents the in-
ternal noisy representation of the optic flow. We assume that both n1 and n2

are independent, zero-mean and normally distributed: n1[k] = N(0,Λ1) and
n2[k] = N(0,Λ2). More precisely, Φ models space-invariant nearest-neighbor
interactions within a finite region Ω in the (i, j) plane that is bounded by a
piece-wise smooth contour. Interactions occur, separately for each component of
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cliques boundary conditions
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Fig. 2. Basic lattice interconnection schemes for the linear deformation templates con-
sidered. The boundary value λ controls the gradient slope.

the velocity vectors (vx, vy), through anisotropic interconnection schemes:

vx/y(i, j)[k] = w
x/y
N vx/y(i, j − 1)[k − 1] + w

x/y
S vx/y(i, j + 1)[k − 1] +

w
x/y
W vx/y(i− 1, j)[k − 1] + w

x/y
E vx/y(i+ 1, j)[k − 1] +

w
x/y
T vx/y(i, j)[k − 1] + n

x/y
2

(i, j)[k − 1] + sx/y(i, j) (7)

where (sx, sy) is a steady additional control input, which models the boundary
conditions. In this way, the structural constraints necessary to model cardinal
deformations are embedded in the lattice interconnection scheme of the process
equation. The resulting lattice network has a structuring effect constrained by
the boundary conditions that yields to structural equilibrium configurations,
characterized by specific first-order EFCs. The resulting pattern depends on the
anisotropy of the interaction scheme and on the boundary conditions (see Fig. 2).
Given Eqs. (5) and (6), we may write the optimal filter for optic flow Gestalts.
The filter allows to detect, in noisy flows, intrinsic correlations, as those related
to EFCs, by checking, through spatial recurrent interactions, that the spatial
context of the observed velocities conform to the Gestalt rules, embedded in Φ.

5 Results

To understand how the CSF works, we define the a priori state estimate at step
k given knowledge of the process at step k − 1, v̂[k|Vk−1], and the a posteriori

state estimate at step k given the measurement at the step k, v̂[k|Vk]. The aim
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of the CSF is to compute an a posteriori estimate by using an a priori estimate
and a weighted difference between the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] +G[k] (v[k]− v̂[k|Vk−1]) (8)

The difference term in Eq. (8) is the innovation α[k] that takes into account
the discrepancy between the current measurement v[k] and the predicted mea-
surement v̂[k|Vk−1]. The matrix G[k] is the Kalman gain that minimizes the a
posteriori error covariance:

K[k] = E
{

(v[k]− v̂[k|Vk])(v[k]− v̂[k|Vk])
T
}

. (9)

Eqs. 8 and 9 represent the mean and covariance expressions of the CSF output.
The covariance matrix K[k] provides us only information about the proper-

ties of convergence of the KF and not whether it converges to the correct values.
Hence, we have to check the consistency between the innovation and the model
(i.e., between observed and predicted values) in statistical terms. A measure of
the reliability of the KF output is the Normalized Innovation Squared (NIS):

NISk = αT [k] Σ−1[k] α[k] (10)

where Σ is the covariance of the innovation. It is possible to exploit Eq. (10) to
detect if the current observations are an instance of the model embedded in the
KF [3].

To assess the performances of the CSFs, we applied them to real world optic
flows. A “classical” algorithm [4] has been used to extract the optic flow. Reg-
ularized motion estimation has been performed on overlapping local regions of
the optic flow on the basis of twenty-four elementary flow components. In this
way, we can compute a dense distribution of the local Gestalt probabilities for
the overall optic flow. Thence, we obtain, according to the NIS criterion, the
most reliable (i.e. regularized) local velocity patterns, e.g., the patterns of local
Gestalts that characterize the sequence (see Figs. 3 and 4).
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Fig. 3. Results on a driving sequence showing a road scene taken by a rear-view mirror
of a moving car under an overtaking situations: Gestalt detection in noisy flows and
the resulting motion segmentation (context information reduces the uncertainty on the
measured velocities). Each symbol indicates a kind of EFC and its size represents the
probability of the given EFC. The absence of symbols indicates that, for the considered
region, the reliability of the segmentation is below a given threshold.
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Fig. 4. Context-based patch motion estimation on a sequence showing a hand rotating
around its vertical axis. The outputs of the CSFs can be used for motion segmentation
evidencing segregation of different motions of each part of the hand: lighter grays
indicate leftward motion, whereas darker grays indicate rightward motion.


