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SE-58183 Linköping, Sweden, mfe@isy.liu.se

2 Computational Neuroscience, Department of Psychology, University of Stirling
Stirling FK9 4LA Scotland, UK, norbert@cn.stir.ac.uk

Abstract. In this paper we address the problem of appropriately rep-
resenting the intrinsic dimensionality of image neighborhoods. This di-
mensionality describes the degrees of freedom of a local image patch and
it gives rise to some of the most often applied corner and edge detectors.
It is common to categorize the intrinsic dimensionality (iD) to three dis-
tinct cases: i0D, i1D, and i2D. Real images however contain combinations
of all three dimensionalities which has to be taken into account by a con-
tinuous representation. Based on considerations of the structure tensor,
we derive a cone-shaped iD-space which leads to a probabilistic point of
view to the estimation of intrinsic dimensionality.

1 Introduction

The aim of this paper is to develop a representation of the intrinsic dimen-
sionality which is well suited for further probabilistic processing. The intrinsic
dimensionality (iD) is a well known concept from statistics which can be defined
as follows: ”a data set in d dimensions is said to have an intrinsic dimensionality
equal to d′ if the data lies entirely within a d′-dimensional subspace” [1], p. 314.
The term itself goes back to the late sixties [2]. The intrinsic dimensionality
was introduced to image processing by Zetsche and Barth [3]. It is obtained by
applying the previous definition to the spectrum of an image patch, i.e., the
Fourier transform of a neighborhood. The three possible intrinsic dimensionali-
ties in images are defined according to their local spectrum [4] (see also Fig. 1):
i0D – It is concentrated in the origin, i.e., the neighborhood is constant.
i1D – It is concentrated in a line through the origin, i.e., the neighborhood is
varying in only one direction. These signals are also called simple signals [5].
i2D – It is neither concentrated in the origin, nor in a line.

Typical examples for i1D neighborhoods are edges, lines, sinusoids, whereas
corners, junctions, line ends, spots are instances of i2D neighborhoods. As soon
as we take noise into account, the discrete definition above becomes useless.
Noise is i2D and every signal contains noise. Hence, every image neighborhood
is i2D. But how to distinguish between noise and i2D image structures?
? This work has been supported by DFG Grant FE 583/1-2.
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Fig. 1. Illustration intrinsic dimensionality. In the image on the left, three neighbor-
hoods with different intrinsic dimensionalities are indicated. The other three images
show the local spectra of these neighborhoods.

In recent years, there have been several attempts to define image processing
operators which detect the intrinsic dimensionality in images. Note that as long
as the intrinsic dimensionality is considered to be a discrete choice from the set
{i0D, i1D, i2D}, it is more appropriate to speak of detection rather than estima-
tion. By switching from a discrete choice to a continuous model for the intrinsic
dimensionality, we also switch the terminology from “detection” to “estimation”.
Looking at the examples for i2D patches, evidently every corner detector is a
detector for i2D neighborhoods. Considering image patches at an appropriate
scale, all line and edge detectors are detectors for i1D neighborhoods. Besides
these two popular fields of image processing, there are other approaches to de-
tect or measure the intrinsic dimensionality, e.g., by Volterra operators [4], tensor
methods [6, 5], and generalized quadrature filters [7, 8].

Since the structure tensor is probably the most well known approach among
these, our paper is based on an analysis of the latter approach. From this analysis
we derive a new continuous, triangular representation of intrinsic dimensional-
ity, making use of barycentric coordinates. These coordinates can be interpreted
as confidences of the measurements or the likelihood that the measurement is
correct. Hence, they can be used as a prior for further probabilistic processing.
The new contribution of this paper compared to [5], p. 253, is the introduction
of a coefficient for the i0D case, such that the coefficients add up to one and can
therefore be interpreted as probabilities.

In a second step, we introduce orientation information to our model, resulting
in a cone shaped geometry. This model allows us to average the representation
while treating i1D structures with different orientations in an appropriate way,
i.e., two i1D neighborhoods with different orientations result in an i2D measure-
ment. This extension of the model makes it independent of the structure tensor:
No i2D information is necessary for our model, a simple gradient estimation or
quadrature filter response is sufficient. Furthermore, we switch from a determin-
istic preprocessing to a probabilistic estimation of the barycentric coordinates.



2 A Continuous Definition of Intrinsic Dimensionality

The structure tensor is an approach for the local analysis of images that was
first proposed in 1987 [9, 10]. For our considerations, however, the derivation
in [11] is most appropriate: The structure tensor can be considered as a local
approximation of the auto-covariance function in the origin.

The structure tensor is typically interpreted in terms of its eigensystem. Its
two eigenvalues correspond to the maximum and minimum 1D frequency spread3

in the neighborhood of x, i.e.,

λ1 ∼ max
e1

∫
(e1 · u)2|Fx(u)|2 du and λ2 ∼ min

e2

∫
(e2 · u)2|Fx(u)|2 du , (1)

where u = (u, v)T is the frequency vector and Fx(u) is the local spectrum. The
two vectors e1 and e2 are perpendicular and e1 represents the main orientation of
the structure. In practice, the structure tensor is typically computed by averaging
the outer product of the image gradient:4

J(x) =
∫
N (x)

(∇f(x′))(∇f(x′))T w(x − x′) dx′ , (2)

where w(·) is some weighting function for the neighborhood N and ∇f(·) is the
image gradient. According to the power theorem [14] and the derivative theorem
of the Fourier transform, the tensor J is proportional to the second moment
tensor of the local Fourier spectrum, i.e.,

J ∼
∫

uuT |Fx(u)|2 du , (3)

such that the eigenvalues of J are consistent with (1).
A classical technique for estimating the intrinsic dimensionality is to con-

sider the rank of the structure tensor. Theoretically, the number of non-zero
eigenvalues corresponds to the rank of the tensor, and therefore, to the intrinsic
dimensionality of the neighborhood. In practice the eigenvalues are never zero
due to noise and a commonly applied method is to threshold the eigenvalues [6].
This approach leads to a discrete categorization of neighborhoods according to
their intrinsic dimensionality.

Indeed, it is not only noise that disturbs the evaluation of the rank, but
most neighborhoods in real signals consist of combinations of i0D, i1D, and i2D
signals. Hence, it is more appropriate to think of the intrinsic dimensionality as
a continuous measure rather than a discrete set of cases. In order to define a
continuous measure, it is necessary to define the topology of the measurement
3 The frequency spread is obtained by considering the variance of the squared ampli-

tude response [12].
4 The are other ways to compute the structure tensor, e.g., polar separable quadrature

filter [5] or polynomial expansions [13], but the gradient based approach is best suited
in the context of this paper.



space. For the intrinsic dimensionality we observe that the measurement space
cannot be 1D, since each of the intrinsic dimensionalities is adjacent to the other
two. The intrinsic dimensionality space is thus 2D.

One approach which at least partially realizes a continuous measure is the
coherence [6], which takes values in the interval [0, 1] depending on the quotient5

c =
λ1 − λ2

λ1 + λ2
. (4)

The coherence is one for ideal i1D neighborhoods and tends to zero for isotropic
structures, i.e., it represents the confidence for the presence of an i1D structure.
However, the coherence does not take the i0D case into account. In the latter
case, we meet a singularity for A = λ1 + λ2 = 0 (see Fig. 2, left). Therefore,
the coherence is mostly combined with a threshold of A, i.e., the coherence
approach is a mixture of a continuous model (i1D–i2D) and a discrete model
(i0D–i1D/i2D). Notice that one of the most popular corner detectors, the Harris-
Stephens detector [15], is based on the coherence measure.

Another approach to realize a continuous measure is proposed in [5], p. 253,
where the tensor is decomposed into a linear combination of tensors with different
(non-zero) rank. For images, the linear coefficients are given by λ1 − λ2 (i1D)
and λ2 (i2D). Considering these coefficients in an orthonormal basis6 yields a
π/4 sector (see Fig. 2, center). The same sector shaped space is obtained by
multiplying the coherence by A. The center point of the sector corresponds to
an i0D neighborhood, one edge corresponds to i1D neighborhoods and the other
one corresponds to i2D neighborhoods. Due to the triangular structure, we avoid
the problem of evaluating the coherence for A = 0. However, the problem with
the i0D case is still present, since there is no upper bound of the coordinates.
Without having an upper bound, i.e., without having a finite interval for the
coordinates, we cannot normalize the coordinates. Hence, we cannot represent
confidences for all three cases, and no probabilistic interpretation is possible.

In order to map the measured values to finite intervals, we apply a popu-
lar technique which is called soft thresholding, see e.g. [1, 16]. The value A is
transformed by a non-linear function:

A′ = arctan(a log(A) + d)/π + 1/2 ∈ [0, 1] , (5)

where a and d are real constants. This transformation results in a finite area for
all possible measurements of the intrinsic dimensionality: a triangle, see Fig. 2,
right, with the coordinates

(x, y)T = (A′, A′c)T ∈ [0, 1] × [0, 1] and y ≤ x . (6)

The i0D case corresponds to the coordinates (0, 0), the i1D case to (1, 1), and the
i2D case to (1, 0). The coordinates (x, y) can easily be transformed to barycentric
5 In [6] the coherence is defined as the square of the expression in (4).
6 The decomposition of a 2D tensor into a rank one tensor and an isotropic tensor is

not an orthogonal decomposition, since the angle between a rank one tensor and the
identity is π/4.



Fig. 2. About the topology of iD-space. Left: the coherence leads to an infinite stripe
of width one; center: the tensor decomposition leads to a sector, right: soft thresholding
yields a triangle which can be parameterized by barycentric coordinates.

coordinates [17], yielding three coordinates (ci0D, ci1D, ci2D) with cikD ∈ [0, 1] for
k = 0, 1, 2 and

∑2
k=0 cikD = 1, i.e., the barycentric coordinates can be interpreted

as likelihoods or confidences. The barycentric coordinates correspond to the areas
of the opposite triangles (see Fig. 2, right) and are obtained by the formulas

ci0D = 1 − x ci1D = y ci2D = x − y . (7)

Note that although the new representation of the intrinsic dimensionality has
been derived from considerations of the structure tensor, it is not necessarily
based on its eigenvalues. Any preprocessing method yielding two measurements,
which in some way represent the isotropic and the directed part of a signal
neighborhood, can be used for building up the triangle representation. Other
examples besides the structure tensor are the generalized quadrature filter in [8],
a combination of the Canny edge detector [18] and the Harris-Stephens corner
detector [15] (both without thresholding), or a combination of local amplitude
and local orientation variance [19].

3 The Intrinsic Dimensionality Cone

If we want to process the intrinsic dimensionality information further, we must
assure that the representation is consistent, i.e., averaging of the representation
for two (adjacent) neighborhoods should result in a proper representation for the
joint neighborhood. Considering the different possible combinations, one prob-
lematic case pops up if two i1D neighborhoods with different orientations are
considered. The averaged intrinsic dimensionality according to the representa-
tion defined above is again i1D, which is wrong. Two i1D neighborhoods with
different orientations should give a decreased i1D likelihood and an increased
i2D likelihood, depending on the orientation difference, see Fig. 3, right.

Hence, the triangle representation must be modified to be consistent. The
required modification has already been mentioned implicitly in terms of linear
combination of tensors. A rank one tensor does not only include information
about the eigenvalue, but also about the eigenvector, i.e., the local orientation.
The rank one tensor represents the orientation in double angle, which is ap-
propriate for averaging orientation information [5]. The triangle representation
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Fig. 3. Left: The triangle representation of the intrinsic dimensionality of the three
selected points from Fig. 1. The estimated likelihoods are: 0.95 for the i0D case, 0.72
for the i1D case, and 0.75 for the i2D case. Right: averaging an appropriate i1D rep-
resentation results in a high i2D likelihood at corners. Bottom row, center and right:
histogram representations. The dots indicate the measurements before the averaging,
the diamond indicates the estimate at the corner after the averaging, and the pluses
indicate the estimates at the edges (five pixels from the corner) after the averaging.

is now modified by multiplying the y-coordinate by the complex double angle
representation:

z = y exp(i2θ) , (8)

where θ represents the local orientation, see Fig. 4. This modification leads to a
cone-shaped space for the intrinsic dimensionality, the iD-cone.

Measurements for the intrinsic dimensionality are now combined with orien-
tation information and are represented by coordinates inside the iD-cone. Each
point in the iD-cone corresponds to a set of local image structures with the
same orientation and the same intrinsic dimensionality. Averaging the cone co-
ordinates over some neighborhood leads to a consistent estimate of the intrinsic
dimensionality in that neighborhood. If the confidences for the different iD cases
are required, we simply evaluate the barycentric coordinates in the plane given
by the complex argument, i.e., y is replaced with |z| in (7).

In the cone model, two i1D structures with different orientations give rise
to an increased likelihood of a i2D structure. This observation implies that it
is not necessary to extract i2D information in the preprocessing, i.e., we do not
need coherence information. It is sufficient to estimate the orientation and the
intensity, to represent this information in cone coordinates (i.e., on the cone
surface), and to apply a local averaging. The i2D information then drops out
as a result of the averaging process.7 The preprocessing can be performed by a
simple gradient estimation, by the Riesz transform, or by a spherical quadrature
filter [20] which was used to produce the results in Fig. 3.

7 This behavior is similar for the averaging of the outer product of gradients for com-
puting the structure tensor [6].
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Fig. 4. Modification of the iD-triangle: multiplying y by exp(i2θ) yields an iD-cone.

Except for the preprocessing, the described approach for estimating the in-
trinsic dimensionality contains only three free parameters: the constants a and d
in (5) and the size of the neighborhood for the local averaging. In our experiments
we set a = 5, d = 0, and the local averaging is obtained by Gaussian smoothing
with variance 2, but the method is very stable with respect to changes in the
parameters. Due to the simple analytic description of the approach, it is straight-
forward to optimize the free parameters for certain applications, e.g., in a similar
way as it is done in the back-propagation algorithm [1]. From this point of view
and since the barycentric coordinates are obtained from an averaging process,
the iD-cone model can be considered as a probabilistic approach. In a larger sys-
tem the estimated likelihoods for the different intrinsic dimensionalities can be
used as priors for the subsequent processing steps. The new model can be applied
in a wide range of applications, e.g., corner detection [8]8, edge detection, curve
fitting, and segmentation. The introduced definition of intrinsic dimensionality
has also been applied as a descriptor for the ’edgeness’ or ’junctioness’ of local
image patches in a new kind of multi-modal image representations [21].

4 Conclusion

In this paper we have derived a continuous representation of the intrinsic di-
mensionality of images. Although our considerations are based on the structure
tensor approach, our model is independent of a specific preprocessing method,
which need not even contain i2D information. The derived finite cone-shaped
iD-space is easily interpreted in terms of a probabilistic representation by using
barycentric coordinates. The model contains only few parameters, which might
be obtained by a learning method, depending on a specific application.
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