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ABSTRACT

A novel method for determining the set of parameters
for aphase space representation of atime seriesis proposed.
Based upon thedifferential entropy, both the optimal embed-
ding dimension m, and timelag 7, are ssmultaneoudly deter-
mined. The choice of these parametersis closdly related to
the length of the optimal tap input delay line of an adaptive
filter or time-delay neural network. The method employs a
singlecriterion—the" entropy ratio” between the phase space
representation of asignal and an ensemble of its surrogates
—and isfirst systematically tested on synthetic time series
for which the optima embedding parameters are known, af -
ter whichitisverified on anumber of benchmark real-world
time series. The proposed entropy ratio method is shown to
consistently outperform some well-established methods.

1. INTRODUCTION

For processing of signalswith structure, as is the case with
most biomedical signal's, an established method for visuais-
ing an attractor of the underlying nonlinear dynamical sys-
tem is by means of time delay embedding [1]. This way,
for agiventimelag r, atime series {z,} isrepresented in
the so-called ‘phase space’ by a set of delay vectors (DVs)
x(k) = [Zk—r,-.., 2r_m-] Of @agiven embedding dimen-
sion m. In digita signa processing, these two parameters
arecrucid for determining the optimal tap input length of an
adaptivefilter or atime-delay neural network. For instance,
if thetemporal span of (m - ) istoo small, the signd varia-
tionwithinthe delay vector ismostly governed by noise and
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either m or 7 should be increased. However, thereis no es-
tablished criterion for choosing which of thetwo parameters
to modify. In practice, it is common to have a fixed time
lag T (sampling rate) and to adjust the embedding dimension
m (length of afilter) accordingly. Noticethat if ~ were too
small to cover the minimal time span needed to capture the
dynamics of a signa, the tap input length m (and thus the
number of filter parameters) would become rather large, re-
sulting in an increased complexity of training. In turn, if 7
isgreater than optimal, the nature of the resulting model be-
comes too discrete, resulting in afailure of the filter to cap-
ture the underlying signal dynamics. Recall that, athough
in principle, the phase space representation of atime series
isindependent of the value of 7, thisis only the case for an
infinite amount of data, hence the need for an optimisation
method to jointly determine m and .

Several methods exist for determining the optimal em-
bedding parameters, whereby the optimal timelag 7, and
embedding dimension m,,; are optimised separately. This
way, thetimelagisfirst determined asthat for which themu-
tual information between time samples separated by r, that
iszy and x4, isminimal [2]. Using 7., the optimal em-
bedding dimension isfound next, asthat for which the num-
ber of fal se nearest neighbours(ameasure of the consistency
of the Euclidean distance between neighbouringDVsin R ™
when the embedding dimensionisincreased fromm tom +
1), issmall [3]. We refer to the combination of the time de-
layed mutual information and fal se nearest neighbour meth-
odsasthe TDMI/FNN method. Aninterpretationof thefirst
step isthat the axes of the 2D phase space signal representa-
tion are being chosen asindependent as possible, not neces-
sarily agood criterion if the embedding dimension exceeds
two[1]. The second step verifiesthe preservation of thetopo-
logical structure of asignal in R™, the presence of which
suggests strong dependence between the dimensionsin the
phase space. Clearly, thereis an incongruence between the
two stages.

Tothiscause, we proposeaunified and unambiguousop-
timi sation procedurefor simultaneously determining boththe
time lag 7, and the embedding dimension m. The method
isbased on estimates of the differential entropy ratio of the



phase space representation of a sampled time signal and an
ensemble of itssurrogates. For rigour, the proposed method
is compensated for the dimensionality and temporal corre-
latedness.

2. THE ENTROPY RATIO (ER) METHOD

To measure the ’amount of disorder’, based upon the prob-
ability density function (pdf) p(x) of data, the differentia
entropy isused: H(x) = — [7° p(x) In p(x)dx. Par-
ticularly convenient isthe Kozachenko-Leonenko (K-L) es-
timate of the differentia entropy [4]

n(Npj)+In2+Ckg (1)
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owing to its flexibility with respect to the dimensionality of
thedataset. InEq. 1, N isthenumber of samplesinthedata
set, p; isthe Euclidean distance of the j-th delay vector to
its nearest neighbour, and C'’z(~ 0.5772) isthe Euler con-
gtant. For a given embedding dimension, m, and time lag,
7, let H(z, m, ) denotethe differentia entropies estimated
for time delay embedded versions of atime series, =, which
shall be used as an inverse measure of the structure in the
phase space.

2.1. Determining the Optimal Embedding Parameters

The set of optimal parameters, {maps, Topt }, Yields aphase
space representation which best reflects the dynamics of the
underlying signal productionsystem. Therefore, itisexpec-
ted that thisrepresentation hasaminimal differentia entropy
(minimal disorder), and that a deviation from {mqps, Topt }
resultsin an increase. Thus, we optimisethe differential en-
tropy (Eg. 1) for m and 7, theminimumof H (z, m, 7) yield-
ing the optimal set of embedding parameters {mqpt, Topt }-
Noticethat theK-L entropy estimate (Eg. 1) isnot robust
with respect to dimensionality. This is compensated for by
standardising H (z, m, T) with respect to an ensemble of so-
caled ‘surrogates of signa z (for an overview, see[5]). In
the simplest case, N, surrogates z,; ¢ = 1,..., N, of a
signal x are generated by performing arandom permutation
of thetime samples. Thisway, the signal distributionisun-
affected and the serial correlationsare randomised (yielding
awhitened signal with asigna distributionidentica to that
of theorigind z). The K-L estimatesfor thetime delay em-
bedded versions of the original time series H (z, m, 7), and
itssurrogates H (x5 ;, m, T) are computed using Eq. 1 for in-
creasing m and 7 (index i refers to the i-th surrogate). To
determine the optimal embedding parameters, the ratio

_ H(x,m,1)
I(m,r) = —<H(l‘s,i, — 2

needsto beminimised, where (), denotestheaverage over i.
To penaisefor higher embedding dimensi ons, the minimum
descriptionlength (MDL) method issuperimposed, yielding
the “entropy ratio” (ER):

min N

Rent(m, 1) = I(m, 1) + N (3)

where N isthe number of delay vectors, which iskept con-
stant for all values of m and = under consideration. This
way, adifferenceinK-L estimate (Eq. 1) cannot beattributed
to the number of time samples or DVs.

For timeseries exhibitingstrong seria correl ations, how-
ever, applying the method directly yields embedding param-
eters which have apreference for 7., = 1. Indeed, for r =
1, the presence of time correlationsimplies a higher degree
of structure, thus, alower amount of disorder. To that cause,
surrogate data are best generated using the iterative Ampli-
tude Adjusted Fourier Transform (iIAAFT) method [5], which
retai nswithinthe surrogatesboththesignal distributionsand
also approximately the autocorrel ation structure of the orig-
inal signal. Thisway, the seria correlations are present in
both the original and the surrogate time series, as desired.
The minimum of the plot of the entropy ratio yields the op-
timal set of embedding parameters.

3. SSIMULATIONS

To validatethe proposed entropy ratio criterion, itisfirst tes-
ted on avariant of the Henon map, whichisimplemented us-
ing different delays. Next, to highlight the robustness of the
ER method, the effect of resampling atime series at ahigher
rateis examined. Finaly, the proposed method istested on
benchmark time series. In all smulations, Ny = 5 surro-
gates were generated using the iAAFT method, and the en-
tropy ratios were evaluated for m = 2,...,15and 7 =
1,...,10. Increasing the number of surrogates did not af-
fect theresults.

The obtained parameters are compared to those obtained
by combining two established methods for estimating 7o+
and mgp; separately. The time delayed mutual information
(TDMI) method [ 2] estimatestheoptimal timelag asthat for
which the time delayed mutual information function, A(r),
showsthefirst local minimum. Thisfunction can be approx-
imated by [1]:

Z pii (7 Pw( 7) ’ (4)
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where p; isthe probability to find a signal value in the i-th
interval, and p;; () isthejoint probability of finding asignal
valueinthei-thinterval, and avalue at time r later inthe j-
thinterval. The pdfsare estimated using a binning approach
(200 bins). The obtained time lag is consequently used for
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Fig. 1. Analyses for aredisation of the Hénon Map, with
d = 4, using the ER (A) and the TDMI/FNN method (B).
In panel A, the minimum of the ER-plot isindicated by an
opencircle.

estimating the optimal embedding dimensionusingthe False
Nearest Neighbour method (FNN; [3]), which checksfor the
consistency of the distance to the nearest neighbour for in-
creasing vaues of m.

Hénon Map

The variants of the Henon map considered were realisations
of 500 sampl es obtained from

2y = l—azi_s+bye—a; v =2r—q, (5)

wherea = 1.4, = 0.3, and d isatime delay. It isdesired
that mp: isinvariant to the change of d, and that 7, = d.

Figure 1 shows the entropy ratio R.,:(m, ) ford =
4. The minimum of the plot, indicated by an open circle,
yields mq,: = 3 and 755 = 4. The method is tested fur-
ther for d = 1,...,8, and in each analysis the minimum
was found (correctly) for mqp; = 3 and o5 = d (results
not shown). For comparison, the results obtained using the
TDMI/FNN method are shown in Fig. 1B. Using the TDMI
method, thefirst locd isconsistently found at 7., = 1. Asa
consequence, the FNN method compensates for this under-
estimate of 7, and yields an overestimate of mp., which
in nearly all smulationsis mqp: = d.

3.1. Effect of Long Time Correlation

Consider once more a 500 sampl es realisation of Eqg. 5with
d = 2. To investigate time correlations, the time series is
resampled using linear interpolation, whereby s denotesthe
interpolation ratio. It is desired that the embedding dimen-
sion remains constant with respect to the resampling factor,
and that thetimelag is proportional to s.
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Fig. 2. Estimated embedding dimension, m:, and time
lag, opt, &s afunction of the resampling factor, s, for the
Hénon serieswith d = 2. Theresults for the ER are shown
as crosses and the solid curve, and those for the TDMI/FNN
method as squares and the dashed curve, for embedding di-
mensions and time lags, respectively.

ER TDMI/FNN

timeseries | mept  Topt | Mopt  Topt
|aser 5 7 2 2
EEG 5 9 7 11
ECG 5 2 6 10
HRV 4 1 5 10

Table 1. Optimal embedding parameters, m.p, and 7o, Ob-
tained using the entropy ratio, and the TDMI/FNN method.

The results of this experiment are shown in Fig. 2. The
ER method yieldsrobust estimates of the embedding dimen-
sion (crosses), namely either two or three, and the estimated
time lags (solid curve) increase fairly linearly with the re-
sampling factor s. The TDMI/FNN method does not yield
arobust estimate (2 < mgp; < 5, SQUares), or 7,; (dashed
curve), albeit it showsanincreasing trend inthetimelag es-
timates.

3.2. Real-World Examples

The proposed method is next illustrated on four rea-world
examples, namely the chaotic laser series from the SantaFe
Competition, and three physiological signals, froman el ectro-
encephal ogram (EEG) recording, froman el ectrocardiogram
(ECG) recording and, from the | atter, the obtained heart rate
variability (HRV) time series. The resultsare shown in Fig.
3. In dl the plots, a clear minimum is observed, indicated
by an open circle. The resulting embedding parameters are
compared to those obtained using the TDMI/FNN method in
Table 1. Except for the embedding parameters for the EEG
signal, the results are markedly different.

4. DISCUSSION

The choice of the embedding dimension, m, and the time
lag, 7, isimportant both for signal nonlinearity analysisand
for determining the optimal length of tap input delay line of
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Fig. 3. Plots of the ER for the real-world examples: laser series (A), EEG (B), ECG (C) and HRV (D). The minima of the

ER-plotsare indicated by open circles.

an adaptivefilter or time-delay neural network. Tothiscause,
wehaveintroduced anovel measure, the“entropy ratio” (ER),
for determining an optimal set of embedding parameters. The
ER method restsupon theamount of structurewhichispresent
in the time delay embedded (phase space) representation of
the time series, compared to its randomised version. The
random surrogate have been introducedto correct the ER for
effects of dimensionality and autocorrel ation structure, yiel d-
ing a robust (inverse) measure for the amount of structure
present inthe phase space representation. The proposed met-
hod has been systematically tested on synthetic examples,
in which the embedding dimension remained constant, and
the time lag was varied, showing excellent accuracy. The
ER has consistently outperformed the traditional method, a
combination of the TimeDelayed Mutual |nformation (TDMI;
[2]) and the False Nearest Neighbours (FNN; [3]) methods.
The ER has further been illustrated on four real-world ex-
amples, and in most cases the obtai ned embedding parame-
ters were markedly different from those obtained using the
TDMI/FNN method.

The main advantage of the proposed method isthat asin-
gle measure is simultaneously used for optimising both the
embedding dimension and thetimelag. Thisway, theincon-
gruence in methods which combine variations of the time
delayed mutual information and the fal se nearest neighbour
methods is avoided. The entropy ratio criterion requires a
timeseriestodisplay aclear structurein phase space, afairly
common phenomenon in physiological signals. For signals
withno clear structure, themethod will not yield aclear min-

imum, and a different approach needs to be adopted, possi-
bly one that does not rely on a phase space representation.
The entropy ratio has been shown to be robust to the dimen-
sionality and seria correlationsof asignal.
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