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ABSTRACT

A novel method for determining the set of parameters
for a phase space representation of a time series is proposed.
Based upon the differential entropy, both the optimal embed-
ding dimension 
 , and time lag � , are simultaneously deter-
mined. The choice of these parameters is closely related to
the length of the optimal tap input delay line of an adaptive
filter or time-delay neural network. The method employs a
single criterion – the “entropy ratio” between the phase space
representation of a signal and an ensemble of its surrogates
– and is first systematically tested on synthetic time series
for which the optimal embedding parameters are known, af-
ter which it is verified on a number of benchmark real-world
time series. The proposed entropy ratio method is shown to
consistently outperform some well-established methods.

1. INTRODUCTION

For processing of signals with structure, as is the case with
most biomedical signals, an established method for visualis-
ing an attractor of the underlying nonlinear dynamical sys-
tem is by means of time delay embedding [1]. This way,
for a given time lag � , a time series ��
���� is represented in
the so-called ‘phase space’ by a set of delay vectors (DVs)����������� 
�� �"!$#&%'%&%�#(
)� �)*+!-, of a given embedding dimen-
sion 
 . In digital signal processing, these two parameters
are crucial for determining the optimal tap input length of an
adaptive filter or a time-delay neural network. For instance,
if the temporal span of � 
/.0� � is too small, the signal varia-
tion within the delay vector is mostly governed by noise and
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either 
 or � should be increased. However, there is no es-
tablished criterion for choosing which of the two parameters
to modify. In practice, it is common to have a fixed time
lag � (sampling rate) and to adjust the embedding dimension

 (length of a filter) accordingly. Notice that if � were too
small to cover the minimal time span needed to capture the
dynamics of a signal, the tap input length 
 (and thus the
number of filter parameters) would become rather large, re-
sulting in an increased complexity of training. In turn, if �
is greater than optimal, the nature of the resulting model be-
comes too discrete, resulting in a failure of the filter to cap-
ture the underlying signal dynamics. Recall that, although
in principle, the phase space representation of a time series
is independent of the value of � , this is only the case for an
infinite amount of data, hence the need for an optimisation
method to jointly determine 
 and � .

Several methods exist for determining the optimal em-
bedding parameters, whereby the optimal time lag �-1(243 and
embedding dimension 
 1(243 are optimised separately. This
way, the time lag is first determined as that for which the mu-
tual information between time samples separated by � , that
is 
 � and 
 �&5�! , is minimal [2]. Using � 1(243 , the optimal em-
bedding dimension is found next, as that for which the num-
ber of false nearest neighbours (a measure of the consistency
of the Euclidean distance between neighbouring DVs in 6 *
when the embedding dimension is increased from 
 to 
879

), is small [3]. We refer to the combination of the time de-
layed mutual information and false nearest neighbour meth-
ods as the TDMI/FNN method. An interpretation of the first
step is that the axes of the 2D phase space signal representa-
tion are being chosen as independent as possible, not neces-
sarily a good criterion if the embedding dimension exceeds
two [1]. The second step verifies the preservation of the topo-
logical structure of a signal in 6 * , the presence of which
suggests strong dependence between the dimensions in the
phase space. Clearly, there is an incongruence between the
two stages.

To this cause, we propose a unified and unambiguous op-
timisationprocedure for simultaneouslydetermining both the
time lag � , and the embedding dimension 
 . The method
is based on estimates of the differential entropy ratio of the



phase space representation of a sampled time signal and an
ensemble of its surrogates. For rigour, the proposed method
is compensated for the dimensionality and temporal corre-
latedness.

2. THE ENTROPY RATIO (ER) METHOD

To measure the ’amount of disorder’, based upon the prob-
ability density function (pdf) � � � � of data, the differential
entropy is used: � � � � ����� 5����� � � � �
	�� � � � ��
�� . Par-
ticularly convenient is the Kozachenko-Leonenko (K-L) es-
timate of the differential entropy [4]

� � � � ��������� 	�������� � � 7 	���� 7��! (1)

owing to its flexibility with respect to the dimensionality of
the data set. In Eq. 1, � is the number of samples in the data
set, � � is the Euclidean distance of the " -th delay vector to
its nearest neighbour, and �# ��$&% %('*)+) ��� is the Euler con-
stant. For a given embedding dimension, 
 , and time lag,
� , let � � 
 #(
 #(� � denote the differential entropies estimated
for time delay embedded versions of a time series, 
 , which
shall be used as an inverse measure of the structure in the
phase space.

2.1. Determining the Optimal Embedding Parameters

The set of optimal parameters, � 
 1(243 # � 1 2-3 � , yields a phase
space representation which best reflects the dynamics of the
underlying signal production system. Therefore, it is expec-
ted that this representation has a minimal differential entropy
(minimal disorder), and that a deviation from � 
�1(2434#(�(1(2430�
results in an increase. Thus, we optimise the differential en-
tropy (Eq. 1) for 
 and � , the minimum of � � 
 #(
 #(� � yield-
ing the optimal set of embedding parameters � 
�1(2434#(�(1(243�� .

Notice that the K-L entropy estimate (Eq. 1) is not robust
with respect to dimensionality. This is compensated for by
standardising � � 
 # 
 # � � with respect to an ensemble of so-
called ‘surrogates’ of signal 
 (for an overview, see [5]). In
the simplest case, �-, surrogates 
 ,/. 021 � 9 #'%&%'%0# �-, of a
signal 
 are generated by performing a random permutation
of the time samples. This way, the signal distribution is un-
affected and the serial correlations are randomised (yielding
a whitened signal with a signal distribution identical to that
of the original 
 ). The K-L estimates for the time delay em-
bedded versions of the original time series � � 
 #(
 #(� � , and
its surrogates � � 
 ,3. 0 #(
 #(� � are computed using Eq. 1 for in-
creasing 
 and � (index 1 refers to the 1 -th surrogate). To
determine the optimal embedding parameters, the ratio

4 � 
 # � � � � � 
 #(
 #(� �5 � � 
 ,/. 0 # 
 # � ��6 0 # (2)

needs to be minimised, where
5 . 6 0 denotes the average over 1 .

To penalise for higher embedding dimensions, the minimum
description length (MDL) method is superimposed, yielding
the “entropy ratio” (ER):

798/: 3 � 
 # � � � 4 � 
 #(� � 7 
 	����
� # (3)

where � is the number of delay vectors, which is kept con-
stant for all values of 
 and � under consideration. This
way, a difference in K-L estimate (Eq. 1) cannot be attributed
to the number of time samples or DVs.

For time series exhibitingstrong serial correlations, how-
ever, applying the method directly yields embedding param-
eters which have a preference for �41(243 � 9

. Indeed, for � �9
, the presence of time correlations implies a higher degree

of structure, thus, a lower amount of disorder. To that cause,
surrogate data are best generated using the iterative Ampli-
tude Adjusted Fourier Transform (iAAFT) method [5], which
retains within the surrogates both the signal distributionsand
also approximately the autocorrelation structure of the orig-
inal signal. This way, the serial correlations are present in
both the original and the surrogate time series, as desired.
The minimum of the plot of the entropy ratio yields the op-
timal set of embedding parameters.

3. SIMULATIONS

To validate the proposed entropy ratio criterion, it is first tes-
ted on a variant of the Hénon map, which is implemented us-
ing different delays. Next, to highlight the robustness of the
ER method, the effect of resampling a time series at a higher
rate is examined. Finally, the proposed method is tested on
benchmark time series. In all simulations, � , � ' surro-
gates were generated using the iAAFT method, and the en-
tropy ratios were evaluated for 
 �;� #&%'%&%(# 9 ' and � �9 #'%&%'%0# 9 % . Increasing the number of surrogates did not af-
fect the results.

The obtained parameters are compared to those obtained
by combining two established methods for estimating � 1 2-3
and 
 1(243 separately. The time delayed mutual information
(TDMI) method [2] estimates the optimal time lag as that for
which the time delayed mutual information function, < � � � ,
shows the first local minimum. This function can be approx-
imated by [1]:

< � � � �=� � 0 � � 0 � � � �>	��
� 0 � � � �
� 0 � � # (4)

where � 0 is the probability to find a signal value in the 1 -th
interval, and � 0 � � � � is the joint probabilityof finding a signal
value in the 1 -th interval, and a value at time � later in the " -
th interval. The pdfs are estimated using a binning approach
(200 bins). The obtained time lag is consequently used for
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Fig. 1. Analyses for a realisation of the Hénon Map, with
 ��� , using the ER (A) and the TDMI/FNN method (B).
In panel A, the minimum of the ER-plot is indicated by an
open circle.

estimating the optimal embedding dimension using the False
Nearest Neighbour method (FNN; [3]), which checks for the
consistency of the distance to the nearest neighbour for in-
creasing values of 
 .
Hénon Map
The variants of the Hénon map considered were realisations
of 500 samples obtained from


 � � 9 ��� 
 �� ��� 7��
	 � ���
� 	 � � 
 � ��� # (5)

where ��� 9 % � , � � % %�� , and 
 is a time delay. It is desired
that 
 1(243 is invariant to the change of 
 , and that � 1(243 � 
 .

Figure 1 shows the entropy ratio
7����
� � 
 #(� � for 
 �

� . The minimum of the plot, indicated by an open circle,
yields 
 1(243 � � and � 1(243 ��� . The method is tested fur-
ther for 
 � 9 #'%&%&%�#�� , and in each analysis the minimum
was found (correctly) for 
 1(243 � � and � 1 2-3 � 
 (results
not shown). For comparison, the results obtained using the
TDMI/FNN method are shown in Fig. 1B. Using the TDMI
method, the first local is consistently found at �-1(243 � 9

. As a
consequence, the FNN method compensates for this under-
estimate of � 1(243 and yields an overestimate of 
 1 2-3 , which
in nearly all simulations is 
 1(243 � 
 .
3.1. Effect of Long Time Correlation

Consider once more a 500 samples realisation of Eq. 5 with
8� � . To investigate time correlations, the time series is
resampled using linear interpolation, whereby � denotes the
interpolation ratio. It is desired that the embedding dimen-
sion remains constant with respect to the resampling factor,
and that the time lag is proportional to � .
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Fig. 2. Estimated embedding dimension, 
 1(243 , and time
lag, � 1(243 , as a function of the resampling factor, � , for the
Hénon series with 
 � � . The results for the ER are shown
as crosses and the solid curve, and those for the TDMI/FNN
method as squares and the dashed curve, for embedding di-
mensions and time lags, respectively.

ER TDMI/FNN
time series 
 1(243 � 1(243 
 1(243 � 1 2-3

laser 5 7 2 2
EEG 5 9 7 11
ECG 5 2 6 10
HRV 4 1 5 10

Table 1. Optimal embedding parameters, 
�1(243 and �(1(243 , ob-
tained using the entropy ratio, and the TDMI/FNN method.

The results of this experiment are shown in Fig. 2. The
ER method yields robust estimates of the embedding dimen-
sion (crosses), namely either two or three, and the estimated
time lags (solid curve) increase fairly linearly with the re-
sampling factor � . The TDMI/FNN method does not yield
a robust estimate ( ��� 
 1(243 � ' , squares), or � 1 2-3 (dashed
curve), albeit it shows an increasing trend in the time lag es-
timates.

3.2. Real-World Examples

The proposed method is next illustrated on four real-world
examples, namely the chaotic laser series from the Santa Fe
Competition, and three physiological signals, from an electro-
encephalogram (EEG) recording, from an electrocardiogram
(ECG) recording and, from the latter, the obtained heart rate
variability (HRV) time series. The results are shown in Fig.
3. In all the plots, a clear minimum is observed, indicated
by an open circle. The resulting embedding parameters are
compared to those obtained using the TDMI/FNN method in
Table 1. Except for the embedding parameters for the EEG
signal, the results are markedly different.

4. DISCUSSION

The choice of the embedding dimension, 
 , and the time
lag, � , is important both for signal nonlinearity analysis and
for determining the optimal length of tap input delay line of
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Fig. 3. Plots of the ER for the real-world examples: laser series (A), EEG (B), ECG (C) and HRV (D). The minima of the
ER-plots are indicated by open circles.

an adaptive filter or time-delay neural network. To this cause,
we have introduceda novel measure, the “entropy ratio” (ER),
for determining an optimal set of embedding parameters. The
ER method rests upon the amount of structure which is present
in the time delay embedded (phase space) representation of
the time series, compared to its randomised version. The
random surrogate have been introduced to correct the ER for
effects of dimensionalityand autocorrelationstructure, yield-
ing a robust (inverse) measure for the amount of structure
present in the phase space representation. The proposed met-
hod has been systematically tested on synthetic examples,
in which the embedding dimension remained constant, and
the time lag was varied, showing excellent accuracy. The
ER has consistently outperformed the traditional method, a
combinationof the Time Delayed Mutual Information (TDMI;
[2]) and the False Nearest Neighbours (FNN; [3]) methods.
The ER has further been illustrated on four real-world ex-
amples, and in most cases the obtained embedding parame-
ters were markedly different from those obtained using the
TDMI/FNN method.

The main advantage of the proposed method is that a sin-
gle measure is simultaneously used for optimising both the
embedding dimension and the time lag. This way, the incon-
gruence in methods which combine variations of the time
delayed mutual information and the false nearest neighbour
methods is avoided. The entropy ratio criterion requires a
time series to display a clear structure in phase space, a fairly
common phenomenon in physiological signals. For signals
with no clear structure, the method will not yield a clear min-

imum, and a different approach needs to be adopted, possi-
bly one that does not rely on a phase space representation.
The entropy ratio has been shown to be robust to the dimen-
sionality and serial correlations of a signal.
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