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Signal Nonlinearity in fMRI: A Comparison
Between BOLD and MION

Temujin Gautama, Danilo P. Mandic, Member, IEEE, and Marc M. Van Hulle, Senior Member, IEEE

Abstract—In this paper, we introduce a methodology for com-
paring the nonlinearities present in sets of time series using four
different nonlinearity measures, one of which, the “delay vector
variance” method, is a novel approach to the characterization
of a time series. It is then applied to examine the difference in
nonlinearity between functional magnetic resonance imaging
(fMRI) signals that have been recorded using different contrast
agents. Recently, an exogenous contrast agent, monocrystalline
iron oxide particle (MION), has been introduced for fMRI, which
has been shown to increase the functional sensitivity compared
with the traditional blood oxygen level dependent (BOLD) tech-
nique. The resulting fMRI signals are influenced by cerebral
blood volume, whereas the more traditionally recorded BOLD
signals are influenced not only by cerebral blood volume, but
also by the cerebral blood flow and the metabolic rate of oxygen.
The proposed methodology is applied to address the question
whether this difference in the number of physiological variables is
reflected in a difference in the degree of nonlinearity. We therefore
analyze two sets of fMRI signals, one from a BOLD and the other
from a MION monkey study with similar experimental designs.
In the neuroimaging context, the proposed nonlinearity analyses
are different from those described in the literature, since noa
priori model is assumed: rather than pinpointing the source(s) of
nonlinearity, nonparametric analyses are performed on BOLD
and MION fMRI signals. Furthermore, we introduce a strategy
for analyzing a population of fMRI signals, rather than focusing
the analysis on one signal, as is traditionally done in the domain
of nonlinear signal processing. Our results show that, overall, the
BOLD signals are more nonlinear in nature than the MION ones,
which is in agreement with current hypotheses.
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I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) exam-
ines the concentration of a contrast agent as a measure for

cerebral activity. Traditionally, the endogenous contrast agent
deoxyhemogoblin is used for measuring the blood oxygen level
dependent (BOLD) signal, which is a function of the cerebral
blood volume, flow and metabolic rate of oxygen (for an
overview, see [1]). The BOLD signal is a nonlinear observation
of the cerebral activity, a property which has been addressed
as such both experimentally and from a modeling perspective
[2]–[6].

Recently, the use of monocrystalline iron oxide nanoparticle
(MION) as an exogenous contrast agent for fMRI, has been
introduced [7], [8], allowing for the measurement of cerebral
blood volume, which itself is a nonlinear function of the blood
flow (see [9]). This approach has been shown to yield a better
spatial localization of the active brain regions [8], [10], and has
been demonstrated to yield a higher statistical power compared
with experimental BOLD studies [8], [11].

Since the production model of a BOLD signal depends on
more physiological systems that are coupled in a nonlinear
manner than that of MION,1 we hypothesize that this should
be reflected in a lower degree of nonlinearity in the MION
fMRI signals than in the BOLD ones. Indeed, both are “driven”
by the same source, namely the cerebral activity and, thus,
regardless of the fact whether or not the cerebral activity
underlying the fMRI signals is linear, the BOLD signals should
show a higher degree of nonlinearity than the MION ones,
unless several nonlinear effects would cancel each other out.
Linearity in the fMRI context is important, since it allows for
simpler analysis methods, and is often assumed in conven-
tional analyses [12]. The presence of nonlinearities has been
addressed for BOLD [4], [5], [13] and MION [9], but it has
been postulated that a linear model is sufficient in most cases
[13], namely in those where there is no parametric variation
in the form of the underlying evoked neuronal activity. The
presence of nonlinearities in the fMRI signals has so far been
investigated in a parametric manner (for an overview, see [5]),
and, furthermore, no attempt has been made to quantify the
difference in the degree of nonlinearity between BOLD and
MION signals. Therefore, the approach adopted in this paper

1Blood volume, which lies at the basis of the MION signal, is one of the
factors contributing to the BOLD signal in a nonlinear fashion [5].
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is novel: rather than pinpointing the source(s) of nonlinearity,
nonparametric analyses are performed on BOLD and MION
fMRI signals, and a comparative study is performed to test
the hypothesis that BOLD signals convey a higher degree of
nonlinearity than MION signals, irrespective of their source(s)
of nonlinearity. Instead of analyzing the relationship between
stimulus and fMRI signal variation [3], [4], [6], [14], [15], we
analyze the fMRI signalsper se. Notice that in this way, we
analyzesignal, rather thansystemnonlinearities.

Over the last decade, many nonparametric analysis tech-
niques have been developed for the detection of nonlinearity
in a signal (for an overview, see [16]). In this context, many
biomedical signals, including heart rate variabilities (HRVs),
electrocardiogram (ECG), hand tremor, and electroencephalo-
gram (EEG) have been analyzed (see, e.g., [17]–[20]). In this
paper, we introduce a novel “delay vector variance” (DVV)
approach for the characterization of a time series and apply
it to fMRI. Several other nonparametric nonlinearity analysis
techniques are also considered in this context. Extensive
experimentation and rigorous analysis show that the DVV
results are more consistent than the those obtained using the
other methods. We further propose a new methodology for
a population analysis, i.e., for comparing sets of time series,
rather than limiting the analysis to one signal per set. The
proposed methodology is readily applicable to other type of
biomedical signals.

II. SIGNALS AND METHODS

In this section, the data under analysis are briefly described.
The concept ofsignal nonlinearity is compared with that of
systemnonlinearity, after which different nonlinearity measures
are explained. These measures are computed for the original
time series and compared with those obtained for linearized
versions of the signal, called “surrogate time series,” or “sur-
rogates” for short. The procedure for the statistical testing and
the generation of the surrogates is discussed and, finally, we pro-
pose a novel methodology for the nonlinearity analysis of sets
of signals (population analysis), and illustrate it by means of a
synthetic example. We then apply this method to fMRI data in
Section III.

A. Data Description

We analyze time series from two monkey fMRI motion
studies, which are similar in experimental design, one from
BOLD and the other from MION scanning sessions (for details,
see the description of macaque monkey M1 in [8]). We analyze
14 fMRI signals of every study, corresponding to two of the
foci of the study, namely motion areas left and right MT/V5
and their neighboring voxels, yielding a total of 28 signals. The
voxel matching is based on anatomical coordinates, and we
have taken the BOLD foci for reference. The BOLD signals
consist of samples, whereas the MION signals
comprise samples, only segments of which are
shown in Fig. 1. All signals are mean subtracted and linearly
detrended using linear regression. We shall adopt the following
naming convention: BOLD left MT , BOLD right MT

, MION left MT , and MION right MT .

Fig. 1. Time slices of the four fMRI signals (after mean subtraction and
detrending). Starting from the upper left and moving clockwise: BOLD left
MT (s ), MION left MT (s ), MION right MT (s ), and BOLD right
MT (s ).

B. Signal Versus System Nonlinearity

A linear system, , is defined as one that obeys the super-
position and scaling property, namely:

. A system which violates these properties is nonlinear.
By itself, this allows for a very strong tool for assessingsystem
nonlinearity, referred to as “temporal summation,” as has been
applied in the field of neuroimaging [3], [4], [6], [14], [15]: a
short and a long pulse are presented to the system, and a system
is linear if the response to the long pulse can be predicted from
a summation of temporally shifted versions of the response to
the short stimulus.

However, the principle of temporal summation for analysing
the nonlinearity of a system implies that input and output
time series can be measured simultaneously, while in many
real-world settings, this is not possible. In applications of
neuroimaging, for instance, the output can be recorded, but
the input, i.e., the cerebral activity itself, cannot be measured
directly. It is, therefore, approximated by an abstract stimulus
representation (a square wave representing the alternation
between conditions of stimulation and no stimulation).

The analysis of the nonlinearity of asignalcan often provide
insights into the nature of the underlying production system.
However, care should be taken in the interpretation of the re-
sults, since the signal and system nonlinearities are confounded:
the assessment of nonlinearity in a signal does not necessarily
imply that the underlying production system is nonlinear. In-
deed, if the input to the system were nonlinear and the system
itself linear, the measured signal at the output would be non-
linear. Therefore, no unambiguous conclusions regarding an un-
derlying system can be drawn from the nonlinearity analysis of
one signal. However, this approachdoesallow for a compar-
ative analysis between different systems,driven by the same
input. Therefore, we examine the difference in signal nonlin-
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earity between BOLD and MION fMRI signals, which have
been recorded under comparable experimental designs.

C. Nonlinearity Measures

Many of the techniques described in this section rest upon the
method of time delay embedding for representing a time series
in phase space, i.e., by a set of delay vectors (DVs) of a given
embedding dimension , , where is
a time lag, which for simplicity is set to unity in all simulations.
In other words, is a vector containing consecutive time
samples. Every DV has a correspondingtarget, namely the
next sample .

1) Traditional Nonlinearity Measures:Two well-estab-
lished measures for nonlinearity are considered, namely a
third-order autocovariance (C3)

(1)

and the deviation due totime reversibility(REV)

(2)

where is a time lag, which for simplicity and fair comparison,
is set to unity in all analyses. For more details, we refer to [21]
and [22].

2) Correlation Exponent:The approach is described in [23]
and computes the correlation exponent, which yields an indica-
tion of the local structure of a strange attractor. For this purpose,
the correlation integral is computed as

number of pairs whose

distance is less than

where is a length measure which is varied, andis the number
of DVs available for the analysis. In [23], it is established that
the correlation exponent, i.e., the slope of ( , ),
can be taken as a measure for the local structure of a strange
attractor. Several methods exist for determining the range over
which the slope is to be computed (“scaling region,” see, e.g.,
[16] and [24]). We adopt a pragmatic approach. The slope is
computed over the-interval , where and are the
mean and standard deviation of all possible pairwise distances
between different DVs. The resulting slope [referred to as cor-
relation exponent approach (COR)] should not be interpreted as
the actual correlation exponent, but it is sufficient in the context
of surrogate data testing (see Section II-E), since it examines
the correlation integral in a standardized scaling region. Indeed,
since the surrogate time series have signal distributions identical
to that of the original (see Section II-E), the distribution of pair-
wise distances and, thus, the mean and standard deviation, will
be similar. Note that this distribution is approximately Gaussian
for high embedding dimensions. Therefore, the correlation in-
tegral curve is examined in similar regions for both original and
surrogate data, and a difference in the slope indicates a differ-
ence in local structure. Fig. 2(a) shows an example of the scaling
region and the corresponding slope.

The embedding dimension for which the COR analysis is per-
formed, is determined using Cao’s method [25], which is related
to the false nearest neighbor method [26]. The measure, ,
stops changing whenexceeds the optimal embedding dimen-
sion, and quantifies the degree in which nearby DVs have sim-
ilar targets. In our simulations, it is evaluated for embedding

Fig. 2. Example analysis for fMRI signals . (A) Grassberger–Procaccia
curve in the standardized scaling region. The dashed curve represents the
output of the regression from which the slope is computed (in this case
COR = 3:45). (B) Illustration of Cao’s method for determining the optimal
embedding dimension. The determined point of convergence lies at 12.

dimensions . We adopt the following criterion for
determining the point of convergence: the difference between
consecutive measurements should be lower than 0.01 and the
measurement should exceed 0.95 times the mean of the last five
measurements (to compensate for false plateaus). This method
is exemplified for in Fig. 2(b).

D. DVV Method

Here, we introduce a novel analysis of a time series which ex-
amines a signal’s unpredictability by observing the variability
of the targets belonging to sets of similar DVs. The approach
is somewhat related to the false nearest neighbors [26], the

methods [27], and the generalized synchrony approach pro-
posed by [28]. The proposed DVV method can be summarized
as follows for a given embedding dimension.

• The mean and standard deviation are computed over
all pairwise distances between DVs.

• The sets are generated, which consist of all DVs that
lie closer to than a certain distance. The distances
are taken from the interval , e.g.,
uniformly spaced, where is a parameter controlling the
span over which to perform the DVV analysis.

• For every set , the variance of the corresponding tar-
gets, , is computed. The average over all sets, divided
by the variance of the time series yields the measure of
unpredictability

(3)

We refer to this measure as the “target variance,” and only
compute the variance if contains at least 30 DVs.

It is intuitively clear and mathematically sound that, when
the embedding dimension and time lag are correctly determined
and the signal exhibits some kind of structure, similar delay vec-
tors (in terms of their Euclidean distance) have similar targets.2

Therefore, for a correct choice of embedding parameters (which
might not be unique), the target variance conveys information
regarding one of the fundamental properties of a signal, namely
its predictability. The two extreme cases are white noise (com-
pletely unpredictable) and a deterministic signal (completely

2This is related to the continuity of the mapping from DV to target, as de-
scribed in [27].
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Fig. 3. (A) DVV-plots for BOLD left MT and (B) MION left MT shown as
solid curves. The average DVV-plots for linearized versions (computed over 99
surrogates) are shown as dashed curves.

predictable). The resulting “DVV-plots” are obtained by plot-
ting this measure of unpredictability as a function of the
standardized distances. Examples for BOLD left MT and
MION left MT are shown in Fig. 3(a) and (b), respec-
tively. The DVV-plots for linearized versions of these time se-
ries (surrogates, see further) are shown as dashed curves.

The optimal embedding dimension can be determined by run-
ning a number of DVV analyses for different values of, and
choosing that for which the minimal target variance is lowest,
i.e., that which yields the best predictability. We have performed
this analysis for embedding dimensions ranging from 2 to 25.
Examples are shown in Fig. 7.

In the following step, the linear or nonlinear nature of the
time series is examined by performing DVV analyses on both
the original and a number of surrogate time series (see below),
using the optimal embedding dimension of the original time se-
ries. Due to the standardization of the distance axis, these plots
can be conveniently combined in a scatter diagram, where the
horizontal axis corresponds to the DVV-plot of the original time
series (Fig. 3, solid curves), and the vertical to that of the sur-
rogate time series (Fig. 3, dashed curves). If the surrogate time
series yield DVV-plots similar to the original, the “DVV scatter
diagram” coincides with the bisector line, and the original time
series is probably linear. The deviation from the bisector line is,
thus, a measure of nonlinearity (for examples, see Fig. 8).

For statistical testing, it is convenient to quantify the DVV
scatter diagram using a single measure. The deviation from the
bisector line can be used for this purpose and can be computed
as the root-mean-square error (RMSE) between the’s of the
time series (original or surrogate) and the ’s averaged over
the DVV-plots of the surrogate time series.

E. Statistical Testing and Surrogate Data

The described techniques compare their results on the orig-
inal signals to those obtained for linearized versions of these
signals, the so-calledsurrogatetime series (or “surrogates” for
short). These surrogates are realizations of a composite null hy-
pothesis, which in our case is that the original time series is
linear (see further). If the analysis result for the original time
series is significantly different from those of the surrogates, the
null hypothesis is rejected and the original time series is hypoth-
esized to be nonlinear. Since the analytical form of the proba-
bility distribution of the test statistics, i.e., the nonlinearity mea-
sures, is not known, a nonparametric rank-based test is used, as

suggested by [29]. For every original time series, we generate
surrogates for the nonlinearity tests. A right-tailed test

(DVV) is rejected if rank of the original time series exceeds
90, and a two-tailed test (C3, REV, and COR) is rejected if rank

is greater than 95 or less than or equal to 5. For the subsequent
analyses, it is convenient to define the symmetrical rank
as follows:

for right - tailed tests

for two - tailed tests (4)

In this way, any of the described tests (right- or two-tailed) is
rejected if .

Statistical Testing:A key issue in surrogate data testing is
the definition of an appropriate null hypothesis. In this study,
we have adopted a composite null hypothesis [30]. In contrast
to asimplenull hypothesis, which asserts that the analyzed time
series is a realization of a specified and unique process, acom-
positenull hypothesis specifies a family of processes and asserts
that the process underlying the given time series is a member
of that family [29]. In the case of the composite null hypoth-
esis that the time series is generated by a Gaussian linear sto-
chastic process, surrogates areconstrainedto produce autocor-
relation functions identical to that of the original time series,
e.g., by phase randomizing the frequency spectrum of the orig-
inal time series [Fourier transform (FT)-based method]. How-
ever, the FT-based method could lead to a false rejection of
the null hypothesis if, e.g., the signal distribution of the orig-
inal time series would not match that of the surrogates, i.e.,
Gaussian, even if the process underlying the original time se-
ries were Gaussian and linear. This is the case for a time series
generated by a Gaussian and linear process and subsequently
passed through a zero-memory observation function,[30].
Such an effect can be incorporated into the composite null hy-
pothesis by constraining the surrogates to have both identical
autocorrelation functionsand identical signal distributions, as-
suming that the zero-memory observation function is in-
vertible.3 Thus, the composite null hypothesis is that of an
underlying Gaussian, linear and stochastic process, followed by
a zero-memory and invertible observation function.

Surrogate Data Generation:Various approaches have been
proposed in the open literature for generating surrogate time se-
ries consistent with the aforementioned composite null hypoth-
esis (for an overview, see [31]). For computational efficiency,
we have opted for the iterative amplitude adjusted FT (iAAFT)
method, introduced in [32]. It retains the linear properties of the
data, namely the autocorrelation function (estimated by means
of the amplitude spectrum) and the empirical signal distribution.
A surrogate time series is generated using a fixed point iteration
algorithm, which guarantees an exact replica of the signal dis-
tribution, and an approximation of the spectrum (the converse
would also be possible, but its impact is beyond the scope of
this paper). We do not include an endpoint matching procedure

3It is important to note thath(�) is not considered as an integral part of the
generating process, since a memory-less and nonlinear function would violate
the superposition principle. It should be regarded as part of the analysis, namely
as a correction for deviations from a Gaussian signal distribution.
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Fig. 4. Time slices of two surrogates, respectively, generated for (A)s and
(B) s .

for the fMRI time series,4 since they are periodic by design (the
same stimulus sequence is repeated several times). Fig. 4(a) and
(b) shows time slices of two surrogates, respectively, generated
for and . Where necessary, the optimal embedding di-
mension is only determined for the original time series, after
which this value is also used for the analysis of the surrogates.

The COR analysis is more specific than the other nonlinearity
analyses, since it examines the local structure of a strange at-
tractor in a certain scaling region. On the other hand, there exist
time series that do not follow a strange attractor, butdo lead to a
rejection of a null hypothesis of linearity. Still, if one time series
follows a strange attractor, and another does not, there should
be a difference in COR results. However, a difference in COR
results as such does not provide sufficient evidence for the pres-
ence of a strange attractor.

F. Population Analysis

We propose a methodology for comparing different sets of
signals on the basis of their degrees of nonlinearity. In this way,
conclusions can be drawn with respect to a population of sig-
nals, rather than of single time series. Each set containstime
series, for each of which surrogates are generated for
performing the rank-test. For each of the four nonlinearity tests
(C3, REV, COR, DVV), the test statistic is computed for the
original time series and its corresponding surrogates,
after which it is assigned a symmetrical rank [(4), where
C3, REV, and COR are two-tailed, and DVV right-tailed tests].
Thus, every set of time series yields symmetrical ranks,
which are visualized in a “rank histogram,” the rightmost bin
of which corresponds to a significant rejection of the null hy-
pothesis at the level of (i.e., ). We
denote the rejection rate as the percentage of ranks that fall in
the rightmost bin. Ideally, the rank histograms should display a
100% rejection rate for a set of nonlinear signals, and for a set
containing linear signals, every bin should contain ranks
(thus, a rejection rate of 10%).

To illustrate the proposed method, consider the following
example of three synthetically generated sets of time series, one
linear, the other nonlinear and the third inherently chaotic. The
linear time series were generated from an autoregressive model
of order four [AR(4)] which was driven using Gaussian white
noise. The nonlinear time series were generated from a bilinear

4The endpoint matching procedure is suggested in [31] as a compensation for
the bias toward a flatter spectrum due to the periodicity assumption of the fast
Fourier transform (FFT).

Fig. 5. Histogram of the rank results of the considered nonlinearity analyses
for the sets of linear (black bars), nonlinear (gray bars) and chaotic time series
(white bars), using bins of 10%. The horizontal axis denotes the symmetrical
rank defined in (4).

model, with linear coefficients that were identical to the linear
AR(4) model, also driven by Gaussian white noise. The chaotic
time series were different realizations of the Hénon map. In
total, we generated three sets of time series of

samples, for each of which surrogate time series
were generated.5

Fig. 5 shows the results for the linear (black bars), nonlinear
(gray bars) and chaotic (white bars) sets. The time reversal
strategy (REV) shows excellent performance: the rejection rate
is 19% for the linear set, 98% for the nonlinear set, and 100%
for the chaotic set. The performance of the proposed DVV is
lower: 14% for the linear and 78% for the nonlinear sets, but
also 100% for the chaotic set. The third-order cumulant (C3)
and the COR are unable to detect nonlinearity in the nonlinear

5In contrast to those generated for the fMRI signals, wehaveused the end-
point matching for reasons described in [31], since the synthetic signals are
not periodic by design. The first and last 40 samples are scanned and the best
matching signal values are used as the signal’s start and end points.
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Fig. 6. Histogram of the rank results of the considered nonlinearity analyses
for the two sets of fMRI signals, using bins of 10%. Results for the BOLD
signals are shown as black bars and those for the MION signals as white bars.
As is the case in Fig. 5, the horizontal axis denotes the symmetrical rank defined
in (4).

set: the rank histograms for the linear and nonlinear sets are
similar, i.e., flat with rejection rates of 14% and 17% for C3,
respectively, 8% and 6% for COR. However, both detect the
nonlinearity in the chaotic set (100% for C3 and 97% for
COR). This is not surprising for COR, since, as explained in
Section II-E, it is based on the presence of a strange attractor,
a property which is absent in the bilinear model that has been
used for generating the nonlinear time series.

III. RESULTS

Population Analysis:The population analysis for nonlin-
earity is now performed on the two sets of fMRI time
series, one from the BOLD, , and the other from the MION
study, . The rank histograms are shown in Fig. 6 (BOLD
results in black, MION results in white) and the rejection rates
in Table I (columns labeled “iAAFT”), showing that with the

TABLE I
REJECTIONRATES (REJ), IN PERCENT AND RESULTS OF THETWO-TAILED

WILCOXON RANK SUM TEST (P ) FOR A DIFFERENCEIN DISTRIBUTIONS.
THE COLUMNS ARE LABELLED “iAAFT” AND “FT” FOR THECORRESPONDING

COMPOSITENULL HYPOTHESES(SEE SECTION II-E). THE LABELS A AND R
IN THE LAST TWO COLUMNS DENOTE ACCEPTANCE ORREJECTION

OF THE NULL HYPOTHESIS AT THELEVEL OF 0.05

TABLE II
RESULTS OF THENONLINEARITY ANALYSES. THE RANK r FOR EVERY

SIGNAL CORRESPONDS TOTHAT IN THE RANK TEST (USINGN = 99
SURROGATES). THE BOXES INDICATE THE TESTSTHAT REJECT THE

NULL HYPOTHESIS AT THE10% LEVEL OF SIGNIFICANCE

exception of C3, all analyses have a higher rejection rate for
than for . The latter rejection rates are still higher than the
10% which is expected for linear signals, therefore indicating
that, on average, the MION signals are nonlinear, but less so
compared with the BOLD signals. The results for C3 arenot
consistent with our hypothesis.

We further test for a difference in distribution between the
nonlinearity measures for and , using the two-tailed
Wilcoxon rank sum test. The results are shown in Table I
(columns labeled “iAAFT”). The fourth column shows , the
probability of observing a result equally or more extreme if the
null hypothesis were true (thus, indicates a difference
in distributions). Note that a one-tailed version of the test, for

, is rejected for the same three tests
with values that are half of those in Table I. The results
for REV, COR, and DVV support the hypothesis that there is,
indeed, a difference in nonlinearity between BOLD and MION
signals. The C3 test does not detect this difference as it did
not distinguish between the linear and the nonlinear sets in our
synthetic example (Fig. 5).

The COR rejection rates for (86%) and (36%) suggest
that the difference in nonlinearity could be attributed to the pres-
ence of a strange attractor, indicating possible chaotic behavior,
albeit the evidence is not conclusive (see Section II-E2). Cao’s
method yields an optimal embedding dimensions between 9 and
13, with no significant difference in distributions between
and .

Detailed Analysis for Example Cases:The foci (left and
right MT) of the two studies are now examined in more detail to
illustrate the various analysis methods. The rankof the mea-
surement for the original time series is shown in Table II. The
table illustrates that it is not evident to detect nonlinearity, since
the various tests (at the level of 0.10) yield different results.
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Fig. 7. Target variance,� for the four fMRI signals as a function of the
embedding dimension. Starting from the upper left and moving clockwise:s ,
s , s , ands . The dashed line indicates the minimal target variance and,
thus, the optimal embedding dimension.

Fig. 8. DVV scatter diagrams of the four fMRI signals for the optimal
embedding dimension (median and quartiles). Starting from upper left and
moving clockwise:s , s , s , ands , with corresponding RMSEs of
0.0804, 0.0214, 0.0275, and 0.0639.

Both the COR and DVV analyses indicate the BOLD signals
to be nonlinear. The REV analysis only shows nonlinearity for

, and the C3 analysis indicates the presence of nonlinearity
in . The DVV analysis also detects nonlinearities in .

The DVV analyses yield optimal embedding dimensions of
21, 16, 15, and 11, respectively, , , , and (see
Fig. 7). The DVV scatter diagrams are shown in Fig. 8 (so as
not to overload the figures, only one in three error bars are

shown). Qualitatively, the DVV scatter diagrams in Fig. 8 in-
dicate that the nonlinearities present in the MION signals are
less pronounced than those in the BOLD signals, which is also
evident in the RMSE values, which are 0.0804 and 0.0639 for
BOLD, and 0.0214 and 0.0275 for MION, respectively, for left
and right MT.

IV. DISCUSSION

It has been shown both experimentally and from a modeling
perspective that the BOLD fMRI signal is a complex function
of the underlying cerebral activity, and depends on the cerebral
blood flow, blood volume, and metabolic rate of oxygen [2]–[6].
Recently, the use of MION as a contrast agent has been shown
to yield a better spatial localization of the active brain regions
and a higher statistical power [8], [11]. The MION fMRI signal
is dependent on fewer (nonlinearly) interrelated physiological
systems than the BOLD one, namely predominantly on blood
volume, which, in turn, is a function of blood flow. This has
led to the working hypothesis of the paper, namely that BOLD
signals show a higher degree of nonlinearity than the MION
signals.

Rather than analyzing and identifying the nonlinearities
present in the production systems of BOLD and MION, we
quantify the signal nonlinearities in the fMRI signals, and
perform a comparative study between BOLD and MION.
Since both are “driven” by the underlying cerebral activity, a
difference in signal nonlinearity can be attributed to a differ-
ence in system nonlinearity. For the assessment of nonlinearity
in a single time series, we have introduced a novel way for
characterizing a time series, the DVV method, and have com-
pared the results with three other, well-established nonlinearity
measures, namely those based on C3, REV, and COR, the
latter of which stems from chaos theory. Furthermore, we have
introduced a methodology for comparing and testing the degree
of nonlinearity between populations of signals, rather than
limiting the analysis to one time series per set, as is traditionally
done in the nonlinear signal processing literature.

The proposed methodology has been applied to time series
obtained from two monkey motion fMRI studies, one BOLD
and one MION, which are similar in experimental design. The
results for the two sets of fMRI signals show that the ratio of
BOLD signals in which nonlinearity is detected, is higher than
that of MION signals, but that in both cases, there is an indi-
cation of nonlinearity. This is not surprising, since the neuronal
activity underlying the BOLD and MION signals has been con-
jectured to be nonlinearly related to the stimulus (see, e.g., [1],
[6]). Furthermore, we have tested for a difference in distribu-
tions between the nonlinearity measures for BOLD and MION
using the Wilcoxon rank sum test, and found that for all mea-
sures except the C3, the difference is significant at the level of
0.05. Finally, the COR analysis, which is related to the pres-
ence of a strange attractor, rejects the composite null hypothesis,
namely that the time series is generated from an amplitude trans-
formed Gaussian linear stochastic process. This indicates that
the nonlinearities present in fMRI signals could be attributed to
the presence of a strange attractor, indicating possible chaotic
behavior, as described in Section II-E.
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Fig. 9. A) Time segment of a hypothetical fMRI response to an on/off
stimulus, for a periodT = 53 s; B) Average degree of nonlinearity (RMSE),
computed over 50 time series, as a function of the periodT . The vertical bars
indicate the standard deviations.

The validation of our working hypothesis supports and, to a
certain extent, explains the findings described in [8] and [11],
where it has been demonstrated that fMRI experiments using
MION yield higher statistical power than those using the BOLD
effect. Indeed, since conventional fMRI analyses use a general
linear model, the lower degree of nonlinearity of MION studies
will yield a lower regression error, and subsequently, higher
statistical power compared with BOLD studies. Furthermore,
the validity of the correction for the haemodynamic impulse-re-
sponse function is violated in a lesser degree by the MION than
by the BOLD signals.

One could argue that the difference in nonlinearity between
BOLD and MION could be attributed to different stimulus
durations, which in our case are 24 s for BOLD and 66 s for
MION. To shed further light on this, hypothetical responses to
on/off stimuli are generated, the periodof which is varied.
They consist of square waves, sampled every 3.321 s, with
an amplitude of 0.5, contaminated by Gaussian, unit-variance
white noise, and convolved with the haemodynamical im-
pulse-response function traditionally used for analyzing BOLD
studies. A time slice of an example signal with s is
shown in Fig. 9(a). The period is varied from 53 (BOLD)
to 133 s (MION), and the DVV method is used for measuring
the degree of nonlinearity (RMSE; the average DVV-plot is
computed over 19 surrogates). For every period, 50 time series
are generated, each of which with a length of 27.678 min,
using different random seeds for the noise. The results are
summarized in Fig. 9(b). The degree of nonlinearityincreases
with the period . Since in the comparative study on the real
recordings, the period for BOLD is lower than for MION,
the degree of nonlinearity of the BOLD set would be expected
to be lower than that of the MION set. However, the analysis
results indicate the converse. Therefore, it can be concluded
that the difference in stimulus timing is not responsible for the
higher degree of nonlinearity in BOLD signals.

Finally, there remains one issue regarding our methodology.
The definition of nonlinearity in the strict sense, e.g., related
to the validity of the superposition principle or to the modeling
of, and compensation for the haemodynamic impulse-response
function, is generally considered too stringent in the context of
surrogate data testing, as explained in Section II-E. Therefore,
we have performed an amplitude transformation, such that
rejections of the null hypothesis due to a mismatch in signal

distribution are avoided (see, e.g., [31]). The results of this
analysis confirmed our working hypothesis. However, the ques-
tion remains whether the difference in degree of nonlinearity
between BOLD and MION can be attributed to the amplitude
transformation, or to the fMRI signals themselves. In order to
address this question, we have also performed the population
analysis without including the amplitude transformation,
namely by using FT-based surrogates (see Section II-E). As
a result, the rejection rates should not be smaller than those
in the case of the iAAFT-based surrogates, since the null
hypothesis is less stringent. This is confirmed by the results
shown in Table I (columns labeled “FT”). When the rejection
rates change, they are higher for the BOLD signals than for
the MION ones. Moreover, the difference between nonlinearity
measures for BOLD and MION remain statistically significant.
This is trivial for C3, REV, and COR, since only the measures
for the original time series are used and are, thus, not influenced
by the surrogate data. The result for DVV changes, since this
method uses the Euclidean distance between the DVV-plot of
the original and the average DVV-plot of the surrogates, and
the difference in distribution becomes even more significant.
Thus, even when performing the nonlinearity analyses with
the strict definition of nonlinearity, BOLD signals are more
nonlinear than MION signals.

The proposed methodology has been applied to the case
of fMRI data recorded using different contrast agents. The
results support the current hypotheses that, indeed, BOLD
fMRI signals are more nonlinear and, thus, more complex,
than the MION signals. The same methodology can be readily
applied to other sets of biomedical signals where a difference
in nonlinearity can, e.g., convey information about the health
status of the subject, as has been suggested in the cases of
EEG (see, e.g., [33]) and HRV (see, e.g., [34]) signals. The
DVV method is expected to provide useful information in these
settings, since it yields clear information regarding the degree
to which the signals in question differ from linear ones, namely
the distance to the bisector line in the scatter diagrams, and
since the sensitivity of the method is overall higher than that
of other methods.
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