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Abstract

The intrinsic dimension (see, e.g., [29, 11]) has proven to be a suitable de-
scriptor to distinguish between different kind of image structures such as
edges, junctions or homogeneous image patches. In this paper, we will show
that the intrinsic dimension is spanned by two axes: one axis represents the
variance of the spectral energy and one represents the a weighted variance in
orientation. Moreover, we will show in section that the topological structure
of instrinsic dimension has the form of a triangle. We will review diverse def-
initions of intrinsic dimension and we will show that they can be subsumed
within the above mentioned scheme. We will then give a concrete continous
definition of intrinsic dimension that realizes its triangular structure.

1 Introduction
Natural images are dominated by specific local sub–structures, such as edges, junctions,
or texture. Sub–domains of Computer Vision have analyzed these sub–structures by mak-
ing use of certain conepts (such as, e.g., orientation, position, or texture gradient). These
concepts were then utilized for a variety of tasks, such as, edge detection (see, e.g., [6]),
junction classification (see, e.g., [27]), and texture interpretation (see, e.g., [26]). How-
ever, before interpreting image patches by such concepts we want know whether and how
these apply. For example, the idea of orientation does make sense for edges or lines but
not for a junction or most textures. As another example, the concept of position is differ-
ent for a junction compared to an edge or an homogeneous image patch. For a junction
the position can be unambiguously defined by the point of intersection of lines, for edges
the aperture problem leads to a definition of the position as a one-dimensional manifold
and for an homogeneous image patch it is impossible to define a position in terms of local
signal attributes. Hence, before we apply concepts like orientation or position, we want to
classify image patches according to their junction–ness, edge–ness or homogeneous–ness.

The intrinsic dimension (see, e.g., [29, 11]) has proven to be a suitable descriptor
in this context. Homogeneous image patches have an intrinsic dimension of zero (i0D),
edge–like structures are intrinsically 1–dimensional (i1D) while junctions and most tex-
tures have an intrinsic dimension of two (i2D). There exists also related classifications
such as the rank of a image patch [17], the rank taking discrete values zero, one, or two.
Another related formulation is the distinction between constant, simple and isotropic sig-
nals [19]. The association of intrinsic dimension to a local image structure has mostly be
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done by a discrete classification [29, 11, 19]. To our knowledge, so far there exists no
continuous definition of intrinsic dimensionality that covers all three possible cases (i0D,
i1D, and i2D). However, there exist attempts to find a continuous formulation between
i1D and i2D signals [17].

In contrast to, e.g, curvature estimators (see, e.g., [2, 25]), the intrinsic dimensionality
does not make any assumption about specific structural attributes of the signal but is is
based a purely statistical criterion: The concept of curvature does make sense for curved
lines but not for junctions or most complex textures. However, the intrinsic dimension is
a sensible descriptor also for these kind of signals (see also [20]).

In section 2.1, we will show that the intrinsic dimension is a local descriptor that is
spanned by two axes: one axis represents the variance of the spectral energy and one
represents the a weighted variance in orientation. In this paper, we will review diverse
definitions of intrinsic dimension. In section 2.2, we will show that they can be subsumed
within the above mentioned scheme. Since the intrinisc dimension is a two–dimensional
structure, no continuous one–dimensional definition is sensible. Moreover, we will show
in section 2.1 that the topological structure of instrinsic dimension essentially has the form
of a triangle. We will then give one possible concrete definition of intrinsic dimension
that realizes its triangular structure in section 3.1.

A classification of edge–ness or corner–ness based on a local image patch without
taking the context into account always faces the problem of the high degree of ambiguity
of visual information (see, e.g., [1]). Taking into account this ambiguity we do not want
to come to a final decision about the junction–ness of edge–ness of an image patch but we
want to associate confidences to such classifications. Assigning confidences instead of
binary decisions at low level stages of processing has been proven useful since it allows
for stabilizing such local classifications according to the context (see, e.g., [1, 21]). By
making use of barycentric coordinates (see, e.g., [7]), we will utilize the triangular struc-
ture of intrinsic dimension to express confidences for the different possible interpretation
in section 3.2. This leads to continuous definition of intrinsic dimensionality that cov-
ers i0D, i1D and i2D signals. Finally, in section 4 we show examples of our continuous
classification of image patches of different intrinsic dimension.

To our knowledge, this paper is the first work that makes the triangular structure of
intrinsic dimensionality explicit and which gives a continuous definition that covers all
three possible cases of intrinsic dimension.

2 The Concept of intrinsic Dimensionality
The intrinsic dimensionality in image processing is a formalization of what is commonly
called ”edgeness” vs. ”junction–ness”. The term intrinsic dimensionality itself is much
more general. In [4], p. 314, it says that ”a data set in d dimensions is said to have
an intrinsic dimensionality equal to d′ if the data lies entirely within a d′-dimensional
subspace”, but indeed, the concept of intrinsic dimensionality is much older [28].

In image processing, the intrinsic dimensionality was introduced by [29] to define
heuristically a discrete distinction between edge–like and corner–like structures. How-
ever, here we want to adopt the more general definition in [4] to image processing. For
this, we have to consider the spectrum of an image patch (see figure 1):

• if the spectrum is concentrated in a point1, the image patch has an intrinsic dimen-
sionality of null (i0D),

1Note that due to the Hermitian spectrum of a (real valued) image, this point can only be the origin, i.e., the
DC component.



• if the spectrum is concentrated in a line2, the image patch has an intrinsic dimen-
sionality of one (i1D), and

• otherwise the image patch has an intrinsic dimensionality of two (i2D).

Figure 1: Illustration intrinsic dimensionality. In the image on the left, three neighbor-
hoods with different intrinsic dimensionalities are indicated. The other three images show
the local spectra of these neighborhoods, from left to right: i0D, i1D, and i2D.

Each of these three cases can be characterized more vividly. Constant image patches
correspond to i0D patches. Edges, lines, and sinusoid-like textures obtained by projecting
1D functions (simple signals [17]) correspond to i1D patches. All other structures like
corners, junctions, complex textures, and noise correspond to i2D patches.

Taking a closer look at the concept of intrinsic dimensionality, two fundamental prob-
lems pop up:

1. The intrinsic dimensionality as it is defined above is a discrete feature in {i0D,
i1D, i2D}. However, every real signal consists of a combination of intrinsic di-
mensionalities – there are hardly any totally constant or ideal i1D image patches
in real images. Hence, we would like to have a continuous definition of intrinsic
dimensionality.

2. The topology of the iD-space is yet undefined. In case of a discrete space, the re-
lations between the different intrinsic dimensionalities is obvious, all dimensional-
ities are mutually adjacent. The topology of the continuous iD-space is considered
in the subsequent section.

In the following section we discuss a new model for representing the intrinsic dimen-
sionality in a continuous, topologically appropriate way. The subsequent section gives an
overview of known methods for estimating the intrinsic dimensionality and relates them
to our new model.

2.1 The Intrinsic Dimensionality has a 2D Triangular Structure
For the estimation of the intrinsic dimensionality of an image patch, we need to apply a
measure for the spread of the spectral data, either to a point or to a line. The classical
approach from statistics for such a measure is the variance of the data. Since a change of
the coordinate system results in new stochastic variables, the computation of the variance
depends on the coordinate system, for instance in Cartesian coordinates vs. polar coordi-
nates. Different coordinate systems lead to further diversification of practical approaches.

2With the same argument as in footnote 1, this line goes through the origin.



To be more concrete, the variance of the spectral data with respect to the origin in a
cartesian coordinate system is defined by

σ2
O =

1

N

∫∫

Ω

|u|2|F (u)|2 du , (1)

where u is the frequency vector, Ω is the region of integration in the Fourier domain3 and

N =

∫∫

Ω

|F (u)|2 du (2)

is a normalization constant. The variance with respect to a line is given by

σ2
L = min

n

1

N

∫∫

Ω

|nT u|2|F (u)|2 du , (3)

where n is obtained to be parallel to i1D signals, i.e., it represents the orientation. The
variance σ2

O defines some kind of measure of the local grey level variation whereas the
the variances σ2

L reflects the dynamic perpendicular to the main orientation.
If we change to polar coordinates u 7→ (q, θ), we get two new variances, the radial

variance

σ2
R =

1

N ′

∫ Q

0

q2

∫ 2π

0

|F (q cos θ, q sin θ)|2 dθ dq , (4)

where Q is the radius of Ω, and the angular variance

σ2
A = min

θ0

1

N ′

∫ θ0+π

θ0−π

(θ − θ0)
2

∫ Q

0

|F (q cos(θ − θ0), q sin(θ − θ0))|
2 dq dθ , (5)

where the normalization constant N ′ is given similar to (2), performing the integration in
polar coordinates. The angle θ0 represents the local orientation.

The two characterizations (σ2
O, σ2

L) and (σ2
R, σ2

A) are different in detail, but related.
The most important difference between the two variances σ2

O and σ2
R is the different

weighting of the frequency components due to the missing Jacobian of the coordinate
transform. The two variances σ2

L and σ2
A differ more essentially, since σ2

A becomes un-
defined for σ2

R = 0. The orientation variance σ2
A corresponds to formulations of intensity

invariant measures of the ’i1D-ness’. This intensity invariance prevents a probabilistic,
triangular formulation of intrinsic dimensionality since the i0D case is neglected. Exam-
ples for such traditional, intensity invariant measures are the coherence [19] (see also next
section) and the isotropy factor [11].

For the idealized cases of purely i0D, i1D, and i2D signals, the variances obviously
behave as given in table 1. By a proper normalization (σ̃2

O = kσ2
O, etc.), the entries

”large” in this table can be replaced by ”1”, yielding an overall range of [0, 1]× [0, 1], i.e.,
the iD-space spanned by σ̃2

R and σ̃2
A corresponds to a 2D square. The entry ”undefined”,

however, cannot be simply replaced by a value between zero and one, all values coexist
with the same right. In other words, one edge of the square is singular. To solve for this
singular edge, a straightforward idea is to multiply σ̃2

A with σ̃2
R (see section 3), which

can be considered as a replacement for the Jacobian, i.e., we consider a space similar to
(σ̃2

O, σ̃2
L) instead. Since the (σ̃2

R, σ̃2
A) space is a 2D square, we obtain a 2D triangle for

(σ̃2
O, σ̃2

L), see figure 2.

3In practice, this is mostly a Gaussian window, i.e., we consider the windowed Fourier transform (2D version
of the short-time Fourier transform).



intrinsic dimensionality i0D i1D i2D
σ2

O 0 large large
σ2

L 0 0 large
σ2

R 0 large large
σ2

A undefined 0 large

Table 1: Intrinsic dimensionality and variances. A zero variance means a ideal concentra-
tion of the spectral data.

Figure 2: About the topology of iD-space. Left: traditional iD-space (square), center: our
iD-space (triangle), right: parametrization of the iD-triangle by barycentric coordinates.

Each of the corners of the triangle corresponds to a certain intrinsic dimensionality.
The topology of the triangle allows to vary the intrinsic dimensionality continuously from
any case to any other case. This observation is very important in practice since, as stated
further above, every real signal consists of a combination of intrinsic dimensionalities.
The parameterization of the iD-triangle is described in detail in section 3.

2.2 Approaches for Estimating the Intrinsic Dimensionality
The various approaches which occurred in the literature so far mainly differ with respect to
two aspects: (1) the computation of the variances and (2) the coordinate system. Nearly
all systematic approaches to measure the intrinsic dimensionality are known as or are
equivalent to the structure tensor [3, 16].

Basically, the variances can either be computed by outer products of first order deriva-
tives or by combinations of quadrature filter responses, see [17, 19] for an overview.
There are other but still related methods, e.g., polynomial expansions [10] and higher
order spherical harmonics [13]. Most approaches make use of Cartesian coordinates to
compute and to represent the variances, but an evaluation in polar coordinates is at least a
plausible alternative, see section 3 and [8].

The first approach to what is nowadays called structure tensor is based on averaging
the outer product of derivatives. This method was independently invented by Bigün and
Granlund [3] and Förstner and Gülch [16]. In [15] a deeper analysis of the structure
tensor from a statistical point of view is developed. The idea is to approximate the auto-
covariance function by a truncated Taylor series expansion in the origin. The term which
is obtained by this expansion is given by

J =

∫

Ω

uuT |F (u)|2 du . (6)

Applying the power theorem [5] and the derivative theorem, we end up with

J =

∫

ω

(∇f(x))(∇f(x))T dx , (7)



where ω is a local region of integration in the spatial domain (a Gaussian window in case
of a windowed Fourier transform). This tensor J can be visualized by an ellipse, where
the length of the two main axes correspond to the two eigenvalues λ1 and λ2 of the tensor.
The mean of the two eigenvalues (the trace of the tensor) corresponds to the variance with
respect to the origin σ2

O, and the smaller eigenvalue λ2 corresponds to the line-variance
σ2

L. Therefore, the two axes of the iD-triangle are given by (λ1 + λ2)/2 and λ2 and an
appropriate normalization.

The tensor feature which is typically used in context of estimating the intrinsic dimen-
sionality is the coherence4 [3]:

c =
λ1 − λ2

λ1 + λ2

. (8)

The coherence c is related to the variances σ2
O and σ2

L (and to σ̃2
A) by c = 1− 2σ2

L/σ2
O ≈

1 − σ̃2
A. A common method for distinguishing i1D and i2D structures is to threshold the

coherence. This is also the theoretic background of the Harris-Stephens corner detector
[18]. A drawback of all coherence-based methods is that an additional energy thresh-
old has to be applied in order to single out constant (i1D) regions. Our new triangle
model (figure 2, section 3) allows us to postprocess the iD information without applying
threshold at this early step.

A method which is related to the structure tensor but which is different in detail is
based on generalized 2D quadrature filters [13]. The idea of this approach is to compute
responses of steerable quadrature filters which are adapted to the main orientation of the
signal and to the perpendicular orientation. The filters are polar separable and window
out the information in the respectively perpendicular orientation. The effective amplitude
response of the filter set is isotropic.

The resulting feature vector consists of five features among which we find the local
orientation, the local amplitude with respect to the local orientation AM, and the local
amplitude perpendicular to the local orientation Am. Local amplitudes computed by a
quadrature filter are related to variances in the Fourier domain. Assuming that a quadra-
ture filter has a sufficiently small bandwidth, the filter output approximates the Fourier
components at the center frequency [17], page 171. Hence, the local amplitude increases
with increasing variance of the spectrum.

The squareroot of the ratio of the two amplitudes cI =
√

Am/AM is called isotropy
factor and it corresponds to

√

(1 − c)/(1 + c) [11]. Hence, the orientation variance σ̃2
A

is given by

σ̃2
A ≈ 2

σ2
L

σ2
O

= 1 − c =
2c2

I

1 + c2
I

=
2Am

AM + Am

.

Due to the isotropy of the filter set, the mean of the two amplitudes corresponds to a total
local amplitude of the signal and hence to the variance σ2

O. Therefore, after normalization
the amplitudes can be used for parameterizing the iD-triangle: (AM + Am)/2 as the
first coordinate and Am as the second coordinate. Indeed, evaluating Am and applying a
threshold has been used for corner detection in [13].

3 Triangular Definition of intrinsic Dimension
Having shown in section 2.1 that the topological structure of intrinsic dimensionality is
essentially a triangle, we now derive a realization of intrinsic dimensionality that makes
use of its triangular structure. Instead of a binary classification (as done, e.g., in [29, 11,

4In [16] the coherence is squared, which is unnecessary if the eigenvalues are ordered.



19]), we compute 3 values c0D, c1D, c2D, ci ∈ [0, 1] that code confidences for the intrinsic
0–dimensionality, intrinsic 1–dimensionality and intrinsic 2–dimensionality of the signal.

In section 3.1 we will concretize the origin–variance and line–variance introduced in
section 2.1 and use these measures to span a triangle whose corners represent the extremes
of purely i0D, i1D and i2D signals. In section 3.2 we then use barycentric coordinates to
assign the confidences.

3.1 Local Amplitude and Orientation Variance as two axes
spanning the Triangle

Our image processing starts with a filter operation which is based on generalized quadra-
ture filters [14]. These filters perform a split of identity, i.e., the signal becomes orthogo-
nally divided into its amplitude m (indicating the likelihood of the presence of a structure),
its geometric information (orientation) θ and its phase ϕ.

We express our realization of the intrinsic dimenionality triangle in polar coordinates.
To compute the origin–variance we first apply a normalization function N that transfers
the amplitude m that has values in [0,∞] to the interval [0, 1] by performing a smooth
thresholding using a sigmoidal function. The shape of the sigmoid function does depend
on the local and global contrast. In this way even at low contrast image patches image
structures can be detected.5 Assuming a sufficiently small bandwidth of our filters, our
measure for the origin–variance at a pixel position x0 is simply given by the normalized
amplitude (see section 2.2):

σ̂R = N(m(x0)).

To compute our measure for line–variance at pixel position x0, we compute a weighted
variance measure of the local orientation. First, we define a set A(x0) representing the
local neighbourhood of x0 and we compute the mean orientation EA[θ] on A. Weighting
is performed according to the normalized magnitude. Our measure for line variance then
becomes

σ̂L = σ̃2
A · σ̃2

R =
∑

x∈A

(N (m(x)) · d (θ(x), EA[θ])) .

Note that
∑

x∈A d (θ(x), EA[θ]) basically represent σ̃2
A and the mutiplication with

N (m(x)) corresponds to the mutiplication with σ̃2
R.

The metric d takes the singularity of the orientation at 0 and π into account and per-
forms a normalisation that ensures that σ̂L takes values in [0, 1]. The measure σ̂L defines
the second axis of our triangle.

As a final step we apply the squashing function f(x) = xc to steer the distribution of
values in [0,1]. Origin–variance and line variance are finally defined by

σO = σ̂c1

0

σL = σ̂c2

L

where the parameters c1 = 1

6
and c2 = 1

2
have to be proven useful. σ0 and σL span the

triangle (see figure 2). Note that by definition it holds σL < σO.
Since we have defined the axes of our triangle we can now associate the different

intrinsic dimensions to its corners:
An intrinsically zero dimensional (i0D) image patch is characterized by a low origin vari-
ance (σO ≈ 0). Then it also holds σL ≈ 0 since σL < σO by definition. In the triangle

5This normalization has been be proven to be useful in the object recognition system [22] where it is dis-
cussed in detail.



shown in figure 2 (right) intrinsically zero dimensional (i0D) image patches correspond to
the coordinate (0, 0). Although m ≈ 0, the local image patch can also be a projection of a
3D–edge (that usually corresponds to i1D signals) or a junction (that usually corresponds
to i2D signals). The low contrast may be caused by e.g., accidental background–object
constellation or an accidental surface/illumination constellation. To account for these am-
biguities we will (based on the representation introduced here) define confidences that
express the likelihood of the signal being i0D, i1D or i2D.
An intrinsically one dimensional image patch is characterized by a high origin variance
and a low line variance within the image patch. In the triangle in figure 2 (right) this
corresponds to the coordinate (1,0). Note that orientation can only be meaningfully as-
sociated to an intrinsically one–dimensional signal patch. In contrast, for a homogenous
image patch (i0D) or a junction (i2D) the concept of orientation does not make any sense.
With an intrinsically one–dimensional image patch specific problems are associated, for
example the aperture problem which is less severe (or non existent) for intrinsically two–
dimensional signals.
An intrinsically two dimensional image patch is characterized by high origin variance and
high line variance. This corresponds to the coordinate (1, 1) in the triangle shown in figure
2 (right). A parametric description of 2D-image patches is more difficult since there are at
least two possible 3D–sources for an intrinsically two–dimensional image patch. First, it
may be caused by edges meeting in a point or it may be caused by texture. The underlying
3D–description would be different. A texture is most likely produced by a surface–like
structure while a junction most likely is associated to a specific 3D–depth discontinuity.

3.2 Coding intrinsic dimensionality by barycentric coordinates:
Having defined a triangle with its corners representing the extremes in intrinsic dimen-
sionality, we can now code confidences associated to the different intrinsic dimensions
(c0D, c1D, c2D) by using barycentric coordinates (see, e.g., [7]). Given a point inside a
triangle, the Barycentric coordinates describe twice the area of the triangle opposite to the
corners of triangle (see figure 2).

A measurement of σ0 and σ2
L defines a point inside the triangle (0, 0), (0, 1), (1, 1):

p = (px, py) = (σ0, σL).

Our confidences are the barycentric coordinates of this point:

c0D = 1 − px

c1D = px − py

c2D = py

Note that since 0 ≤ py ≤ px ≤ 1 and px ∈ [0, 1] it holds 0 ≤ ci ≤ 1. The three
confidences add up to one since

c0D + c1D + c2D = (1 − px) + (px − py) + py = 1.

4 Simulations
We have applied our definition of intrinsic dimension within a new kind of image rep-
resentation which is based on multi–modal Primitives (see, e.g. [24]). These Primitives
carry information about orientation, colour, optic flow, depth in a condensed way and are
used for scene analysis in the European project ECOVISION [9]. To all attributes in the



Figure 3: Primitives of different intrinsic dimensionality (i2D signals are indicated by a
star and i1D signals by a line at its centers, i0D signals have no special indicator but have
smaller radius. For some Primitives the triangular representation is shown.

different modalities confidences are associated that are subject to contextual modifica-
tion. Our continous definition of intrinsic dimension is used as an additional descriptor
that codes information about the edge–ness or junction–ness of the Primitive. This allows
for, e.g., a use of orientation information for i1D structures only. Figure 3 shows the
extracted Primitives from an image and for some of them the position in the triangular
representation of the intrinsic dimensionality.

The continuous formulation of intrinsic dimension has a number of potential applica-
tions domains. For example, in optic flow analysis it can be used to distinguish between
normal flow (a i1D signal patches) and potentially correct flow (at i2D image patches).
The continuous formulation could allow for an appropriate weighting of flow vectors for
global optic flow interpretation. Another example is the accumulation of ambiguous in-
formation over time (see, e.g., [23]). The continuous formulation would allow for the
postponing of a final decision about edge–ness or junction-ness to a rather later stage of
processing that can make use of a number of time frames.

An extension of this work, in which the triangle formulation is extended to a cone
representation allowing for a probabilsitic of image patches is described in [12].
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