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Abstract. The emergence of complex-valued signals in natural sciences
and engineering has been highlighted in the open literature, and in cases
where the signals have complex-valued representations, the complex-
valued approach is likely to exhibit advantages over the more convenient
real-valued bivariate one. It remains unclear, however, whether and when
the complex-valued approach should be preferred over the bivariate one,
thus, clearly indicating the need for a criterion that addresses this issue.
To this cause, we propose a statistical test, based on the local predictabil-
ity in the complex-valued phase space, which discriminates between the
bivariate or complex-valued nature of time series. This is achieved in the
well-established surrogate data framework. Results on bothe the bec-
nhmark and real-work IPIX complex radar data support the approach.

1 Introduction

Recently, the use of complex-valued signals has shown many advantages over
real-valued bivariate ones, and are an increasingly popular topic in many branches
of physics and DSP. Consequently, considerable research effort has been de-
voted to the extension of nonlinear modelling and filtering approaches towards
complex-valued signals [2—4], the applicability of which has been demonstrated,
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among others in radar, sonar and phase-only DSP. The surrogate data method,
as originally proposed by Theiler et al. [1], has evolved into a standard technique
to test for the presence of nonlinearity in a real-valued time series. In the field of
nonlinear signal processing, such tests are indispensable, since, in principle, sig-
nal nonlinearity should be assessed prior to the utilisation of nonlinear models,
the parameters of which are more mathematically involved to determine than
those of linear models. A reliable, statistical test for assessing the complex-valued
nature of a signal, however, is still lacking.

To that cause, we extend the iterative Amplitude Adjusted Fourier Transform
(iIAAFT) approach [5] toward complex-valued signals (Section 2). A null hypoth-
esis of a complex-valued linear system underlying the time series under study 1
utilised. Next, a novel methodology is proposed for characterising (Section 3),
and statistically testing (Section 4) the complex-valued nature of a time series.
Simulations which support the analysis are performed on both the benchmark
and real-world complex valued data.

2 Surrogate Data

The surrogate data method computes test statistics on the original time series
and a number of so-called ‘surrogates’, which are realisations of a certain null
hypothesis, Hy. These are further used for bootstrapping the distribution of
the test statistic under the assumption of Hy. In this section, a surrogate data
generation procedure known as the (real-valued) iterative Amplitude Adjusted
Fourier Transform (IAAFT) method [5] is shortly introduced, after which an
extension of this method towards complex-valued signals is proposed.

2.1 Real-Valued i1AAFT Method

The iAAFT method generates a surrogate for a real-valued (univariate) time
series under the null hypothesis that the original time series is generated by a
Gaussian linear process, followed by a, possibly nonlinear, static (memoryless)
observation function, (). The surrogates have their signal distributions identical
to that of the original signal, and amplitude spectra that are approximately
identical, or vice versa. Let {|Si|} be the Fourier amplitude spectrum of the
original time series, s, and {c;} the (signal value) sorted version of the original
time series. Note that k denotes the frequency index for the amplitude spectrum,
whereas for a time series, it denotes the time index. At every iteration j of
the algorithm, two time series are calculated, namely r() which has an signal
distribution identical to that of the original, and s(1) which has an amplitude
spectrum identical to the original. The iAAFT iteration starts with r(®) a random
permutation of the time samples:

Repeat:
1. compute the phase spectrum of r=1) — {¢;}
2. compute sU) as the inverse transform of {|Si|exp(i¢r)}



3. compute 7U) by rank-ordering sU) to match {c;}, i.e., sort {sgc])} in ascend-
ing order and set rgc]) = Crank(s}(j))
Until error convergence
The modelling error can be quantified as the mean-square-error (MSE) between
{|Sk|} and the amplitude spectrum of (/). The algorithm was extended towards
the multivariate case in [5], yielding surrogates that retain not only the amplitude
spectra of the variates separately, but also the cross-correlation spectrum. This
was done by modifying the phase adjustment step (step 1): the cross-correlation
between the variates can be retained if the relative phases between the frequency
components remains intact. For details we refer to [5]. Figure 1B shows a real-

valued bivariate IAAFT realisation of the Tkeda Map (shown in Fig. 1A).

2.2 Complex-Valued iAAFT Method

A straightforward extension of the univariate 1A AFT-method towards complex-
valued signals would be if the desired amplitude spectrum is replaced by the
amplitude spectrum of the original complex-valued signal. In the next step, the
desired signal distribution needs to be imposed on the surrogate in the time
domain (step 3 in the iAAFT-procedure). This can be achieved by applying
the rank-ordering procedure to the real and imaginary parts of the signal sep-
arately. However, in practice for complex-valued signals, it is more important
to impose equal empirical distributions on the moduli of the complex-valued
samples, rather than on the real and imaginary parts separately. Therefore, we
subsequently perform a rank-ordering procedure on the moduli, so as to match
the moduli of the original time series. The underlying null hypothesis is that
the time series is generated by a linear complex-valued process, driven by Gaus-
sian white noise, followed by a (possibly nonlinear) static observation function,
h(-), which operates on the moduli of the complex-valued time samples. We pro-
pose the following complex-valued iAAFT (CiAAFT) procedure, using the same
conventions as in the IAAFT case, namely {|S;|} is the Fourier amplitude spec-
trum of the original time series, {cx} is the modulus sorted version of the time
series, r¥) and s() are time series at iteration j with a modulus distribution,
respectively, amplitude spectrum identical to the original time series:
Repeat:
1. compute the phase spectrum of rU~1 — {¢}
2. compute sU) as the inverse transform of {|Sy|exp(i¢y)}
3. rank-order the real and imaginary parts of ) to match the real and imag-
inary parts of {cg}
4. rank-order the moduli of #/) to match the modulus distribution of {c;}
Until error convergence
The iteration is started with r(®) a random permutation of the complex-valued
time samples. Convergence can be monitored as the MSE computed between
{|Sk|} and the amplitude spectrum of (). Simulations suggest that the iteration
can be terminated when the MSE decrement is smaller than 10~5, which typically
occurs after fewer than 100 iterations. Figure 1C shows a CiAAFT realisation
of the Tkeda Map, for which the error curve is shown in Fig. 2A.
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Fig. 1. Realisation of the Tkeda Map (A), iIAAFT (B) and CiIAAFT (C) surrogates.

3 Delay Vector Variance Method

We have used a complex-valued variant of the Delay Vector Variance (DVV)
method [6] for characterising the time series based on its local predictability
in phase space over different scales. For a given embedding dimension m and
resulting time delay embedding representation (i.e., a set of delay vectors (DV),
x(k) = [Tr—m, ..., zk—1]T), a measure of unpredictability, 0*%(rq), is computed
for a standardised range of degrees of locality, rq:

— The mean, pg4, and standard deviation, o4, are computed over all pairwise
FEuclidean distances between DVs, [|x(i) — x(j)]| = \/Z:’le |Zi—n — 2j_n|?
(i #J).

— The sets £2;(rq) are generated such that §£2;(rq) = {x(?)| [|x(k)—x(?)]| < ra}.
The range rq4 is taken from the interval [max{0, pg — nqca}; pa +naodl, e.g.,
uniformly spaced, where ng4 is a parameter controlling the span over which
to perform the DVV analysis.

— For every set §2(rq), the variance of the corresponding targets, o7(rq), is
computed as the sum of the variances of the real and imaginary parts. The
average over all sets £2;(rq), normalised by the variance of the time series,
02, yields the ‘target variance’, 0*?(rq):

0'*2(7°d) — NZkzlzo-l;(rd) (1)

Note that the computation of the Euclidean distance between complex-valued
DVs is equivalent to considering real and imaginary parts as separate dimensions.
Since for bivariate time series, a delay vector is generated by concatenating time
delay embedded versions of the two dimensions, the complex-valued and bivariate
versions of the DVV method are equivalent, and can be conveniently compared
when the variance of a bivariate variable is computed as the sum of the variances
of each variate.

A DVV plot, D, is obtained by plotting the target variance, c*?(rq), as a
function of the standardised distance, % The DVYV plots for a 1000 sample
realisation of the Tkeda Map, P, and the two types of surrogates, D® and D¢,
generated using the 1IAAFT and CiAAFT method, respectively, are shown in
Fig. 2B, using m = 3 and ng = 3.
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Fig.2. A) Convergence of the CIAAFT algorithm; B) DVV plots for the Tkeda Map
(thick solid), for an iAAFT (thin dashed) and a CiAAFT surrogate (thin solid). C)
Number of time series that were judged complex-valued by the proposed method, for
every rangebin in the IPIX radar data set.

4 Statistical Testing

In the framework of surrogate data testing, as introduced by Theiler et al. [1],
a time series is characterised by a certain test statistic, which is compared to
an empirical distribution of test statistics, computed for a number of surrogates
generated under the assumption of a null hypothesis. A significant difference
between the two then indicates that the null hypothesis can be rejected. In the
CiAAFT case, a rejection of the null hypothesis that the signal is complex-
valued and linear, could be due to a deviation from either of the two properties.
Therefore, we propose a different approach: rather than comparing the original
time series to the surrogates, we compare surrogates generated under different
null hypotheses, namely that of a linear and bivariate time series, Hf, and that
of a linear and complex-valued time series, H§. The respective surrogates are
generated using the bivariate IAAFT [5] and the proposed CiAAFT method. All
time series are characterised using the DVV method, and a significant difference
between the two sets of surrogates is an indication that the original time series
is complex-valued. The proposed methodology is the following.

1. Generate Ng . CIAAFT surrogates and the average DVV plot — DO

2. Generate Ny iAAFT surrogates and corresponding DVV plots — {D"};
3. Generate Ny CiAAFT surrogates and corresponding DVV plots — {D°};
4. Compare (D — {D"}) and (D° — {D°}).

To perform the final step in a statistical manner, the (cumulative) empirical
distributions of root-mean-square distances between {DP} and DY, and between
{D°} and DY, are compared using a Kolmogorov-Smirnoff (K-S) test. This way,
the different types of linearisations (bivariate, {DP}, and complex-valued, {D¢})
are compared to the ‘reference’ linearisation given a complex-valued nature of
the time series, D°. The distributions of the test statistics (the root-mean-square
distances) under the different null hypotheses are, in fact, bootstrapped using the
proposed methodology. If the two distributions of test statistics are significantly
different at a certain level «, the original time series 1s complex-valued. Note
that assumptions regarding the possible nonlinearity of the signal are avoided.



5 Simulations

5.1 Synthetic Time Series

The proposed algorithm was tested on five sets of synthetically generated bench-
mark signals containing N = 1000 time samples. The two linear sets contained
time series 1) consisting of time samples that are drawn from a bivariate Gaus-
sian distribution, N'([0,0], [1,2]), rotated over an angle of % (linear bivariate,
“LB”), and 2) generated by considering a Gaussian ‘amplitude spectrum’, adding
random phase and computing the inverse FFT (linear complex, “LC”). The
two nonlinear sets were generated by a nonlinear system described in [7]:

Tp_1 Tp_o (Tr—1 + 2.5)

L+af_+ai,

where v 1s a parameter controlling the prevalence of the nonlinear over the
linear part of the signal, which was set to ¥ = 0.6, unless stated otherwise.
In the first nonlinear set (nonlinear bivariate, “NLB”), both dimensions of
“LB” were separately passed through the nonlinear system, and in the second
set (nonlinear complex, “NLC”), x represents the complex-valued time series
“LC”. The final set contained realisations of the Tkeda Map (an example is shown
in Fig. 1A).

For each of the five sets, 100 realisations of time series were generated, to
each of which the proposed test was applied. For the bivariate sets (LB and
NLB), the number of (erroneous) rejections were of the order expected from the
a = 0.05 level (5/100 and 1/100). The proposed test did not perform well on the
LC set: only 16/100 the time series were correctly judged to be complex-valued.
However, this is not surprising, since any linear complex-valued system has a
bivariate equivalent, though not vice versa. Consequently, the iAAFT method
can represent these time series equally well as the CiIAAFT method. For the NLC
set, the proposed test correctly judged the time series to be complex-valued in
62/100 cases (the performance increased to 79/100 with ¥ = 1.0), and in all of
the Tkeda Map realisations.

5.2 Radar Data

We further considered real-world data taken from in-phase and quadrature com-
ponents from the Dartmouth 1993 TPIX radar data, which is publicly available
(http://soma.crl.mecmaster.ca/ipix). We have arbitrarily selected data set #17,
which was recorded during a higher sea state, with the waves moving away
from the radar. It consisted of 14 rangebins containing a time series of 131,072
complex-valued samples. In the ninth rangebin (and, to a lesser degree in range-
bins 8, 10 and 11), a target was present. The remaining bins only contained
so-called ‘sea clutter’, i.e., radar backscatter from the ocean surface. From every
bin, we considered time segments of N = 1000 samples (one second), and gen-
erated 100 non-overlapping time segments, on each of which the proposed test
was applied.



The number of time series which were judged to be complex-valued, are shown
in Fig. 2C for every bin. On average, 51/100 time series in every bin were found
to be complex-valued, and there were stronger indications of a complex-valued
nature in those bins in which a target was present (bins 8-11, but also in bin 12).
The increased complex-valued nature in the presence of a target was consistent
over different data sets from the same database (results not shown).

6 Conclusions

We have introduced a novel methodology for statistically testing whether or not
the processing of a bivariate time series could benefit from a complex-valued
representation. We have proposed a novel procedure, the Complex iterative Am-
plitude Adjusted Fourier Transform (CiAAFT) method, for generating surrogate
time series under the null hypothesis of a linear and complex-valued system un-
derlying the time series. Consequently, surrogates generated using the traditional
1AAFT method for bivariate time series can be compared to those generated
using the CIAAFT method. Both types of surrogates have been characterised
using a complex-valued extension of the Delay Vector Variance (DVV) method,
allowing for a statistical comparison between the two types of surrogates. If the
difference is significant, the time series is judged complex-valued, and it is judged
bivariate otherwise.

The methodology was validated on synthetically generated time series, and
applied to real-world data obtained from the IPIX radar. The latter data has
been frequently addressed in the open literature (for an overview, see [8]), and
it has been shown that short time segments can be modelled adequately by
a complex-valued autoregressive (AR) model. Tt was demonstrated that 50 %
of the time series from the radar data showed a complex-valued nature, and,
furthermore, that this proportion increased in the presence of a target.
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