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Abstract

A new learning algorithm for kernel-based topographic map forma-
tion is introduced. The kernel parameters are adjusted individually
so as to maximize the joint entropy of the kernel outputs. This is
done by maximizing the differential entropies of the individual ker-
nel outputs, given that also the map’s output redundancy, due to
the kernel overlap, needs to be minimized. The latter is achieved by
minimizing the mutual information between the kernel outputs. As a
kernel, the (radial) incomplete gamma distribution is taken since, for
a Gaussian input density, the differential entropy of the kernel out-
put will be maximal. Since the theoretically-optimal joint entropy
performance can be derived for the case of non-overlapping Gaussian
mixture densities, a new clustering algorithm is suggested that uses
this optimum as its “null” distribution. Finally, it is shown that the
learning algorithm is similar to one which performs stochastic gradi-
ent descent on the Kullback-Leibler divergence for a heteroscedastic

Gaussian mixture density model.



1 Introduction

In an attempt to improve the density estimation properties, the noise tolerance,
or even the biological relevance of the Self-Organizing Map (SOM) (Kohonen,
1982,1995), algorithms have been devised that can accommodate neurons with
kernel-based activation functions, such as Gaussians, instead of Winner-Take-
All (WTA) functions (Voronoi tessellation). An early example is the elastic
net of Durbin and Willshaw (1987), which can be viewed as an equal-variance-
or homoscedastic Gaussian mixture density model, fitted to the data points by
a penalized maximum likelihood term. More recent examples of the density
modeling approach are the algorithms introduced by Bishop and co-workers
(Bishop et al., 1998) (Generative Topographic Map, based on constrained, ho-
moscedastic Gaussian mixture density modeling with equal mixings), Utsugi
(1997) (also using equal mixings of homoscedastic Gaussians), and Van Hulle
(1998) (equiprobabilistic maps using heteroscedastic Gaussian mixtures — thus,
with differing variances). Furthermore, we should also mention the fuzzy mem-
bership in clusters approach of Graepel and co-workers (Graepel et al., 1997),
and the maximization of local correlations approach of Xu and co-workers
(Sum et al., 1997), both of which rely on homoscedastic Gaussians. Graepel
and co-workers (Graepel et al., 1998) also proposed a still different approach to
kernel-based topographic map formation by introducing a non-linear transfor-
mation that maps the data points to a high-dimensional “feature” space, and
that, in addition, admits a kernel function, such as a Gaussian with fixed vari-
ance, as in (kernel-based) Support Vector Machines (SVMs) (Vapnik, 1995).
This idea was recently taken up again by Andras (2001), but with the purpose
of optimizing the map’s classification performance, by individually adjusting
the kernel radii using a supervised learning algorithm. Finally, the original
SOM algorithm itself has been regarded as an approximate way to perform

homoscedastic Gaussian mixture density modeling by Utsugi (1997), Yin and



Allinson (2001), Kostiainen and Lampinen (2002), among others.

Linsker was among the first to develop topographic maps by optimizing an
information-theoretic criterion (Linsker, 1989). He applied his principle of
maximum information preservation (mutual information maximization between
input and output — infomaz for short), to a network of WTA neurons. The
question is now: can this principle also be applied to kernel-based topographic
maps? The obvious answer is to express the average mutual information in-
tegral in terms of the kernel output densities — or probabilities when they are
discretized —, and adjust the kernel parameters individually so that the integral
is maximized. However, such an approach rapidly becomes infeasible in prac-
tice: Linsker already needed to restrict himself to binary outputs in his WTA
network, in order to facilitate the computation of the integral. A different
information-theoretic approach is to minimize the Kullback-Leibler divergence
(also called relative- or cross-entropy) between the true and the estimated input
density, an idea that has been introduced for kernel-based topographic map
formation by Benaim and Tomasini (1991), using homoscedastic Gaussians,
and extended more recently by Yin and Allinson (2001) to heteroscedastic

(Gaussians.

We will introduce in this paper a new learning algorithm for kernel-based
topographic map formation that adjusts the kernel parameters individually,
and in such a manner that the joint entropy of the kernel outputs is maximized.
We will derive our learning algorithm, and the optimization criterion behind
it, in a bottom-up manner by starting with differential entropy maximization:
when this is maximized for a given kernel, then the kernel’s parameters will be
optimally adapted in the sense that the mutual information between the kernel
output and its input will maximal. The kernel output function and the learning
rule for this case are derived in sections 2 and 3, respectively. As our kernel

output function, we take the (radial) incomplete gamma distribution, since the



kernel’s differential entropy is theoretically maximal when the input density
is Gaussian. Section 4 starts with the observation that differential entropy
maximization alone is not sufficient when there are multiple kernels in the
map, since all kernels will eventually coincide. As a measure for kernel overlap,
and thus for the map’s output redundancy, the mutual information between
the kernel outputs is taken. Maximizing joint entropy is then put forward as
our optimization principle since it unifies both requirements: maximizing the
differential entropies of the kernel outputs given that also the map’s mutual
information needs to be minimized. Section 5 then complements the learning
rules with a neighborhood function so that topographic maps can be developed.
Since we are able to derive the theoretically-optimal joint entropy performance
for the case of an input distribution consisting of non-overlapping Gaussians,
we will suggest a new clustering algorithm that uses this optimum as its “null”
distribution in section 6. In section 7, we show that our learning algorithm
is similar to one which performs stochastic gradient descent on the Kullback-
Leibler divergence when heteroscedastic Gaussian mixtures are used. Finally,
in section 8, we discuss the correspondence with other learning algorithms for

kernel-based topographic map formation.

2 Kernel definition

Consider a formal neuron ¢, the output of which is, in response to an input
v € R4 v = [v1,...,v4], described by a (localized) kernel K centered at
w; = [wq,..., wy). For simplicity’s sake, we consider the kernel to be radi-
ally symmetrical around its center, K(v,w;,0;) = K(||v — w;||,0;), with o;
the kernel radius. As motivated by Bell and Sejnowski (1995), the mutual
information between the output y; € R of neuron ¢ and its input v, I(y;,v),
v € ¢, will be maximized when the differential entropy of its output, H(y;),

is maximized. When assuming that the kernel output y; has bounded sup-



port, H(y;) will be maximized when the output distribution is uniform. This
is the case when the output distribution matches the cumulative distribution
function (repartition function) of the input density. This will be our kernel
definition, and its parameters will be adapted to the local input density with
an incremental (“on-line”) learning algorithm. We will first restrict ourselves
to Gaussian input densities.

Assume a d-dimensional Gaussian with mean [u1,. .., 4], and unit variance.
The squared Euclidean distance to the center x 2 Z;l:l(vj — 11;)%, is known

to obey the chi-squared distribution with # = 2 and o = % degrees of freedom

(Weisstein, 1999):

pea(a) = = —SPT8) (1)

for 0 < z < 0o, and with I'(.) the gamma distribution. Hence, the distribution
of the Euclidean distance to the center becomes: p(r) = 2rp(r?), with
r = /z, following the fundamental law of probabilities. After some algebraic
manipulations, and by generalizing to a Gaussian with standard deviation o,

we can write the distribution of the Euclidean distances as follows:

SIE

() exp (- &)
p(r) = Q%F(%) . (2)

The distribution is plotted in Fig. 1 (thick and thin continuous lines). The

mean of r equals p, = ﬁ%;)%l), which can be approximated as V/do, for d
large, using the approximation of Graham and co-workers (1994); the second
moment around zero equals do?. The distribution p(r) quickly approaches a
Gaussian with mean p, and standard deviation % when d increases: e.g.,

the skewness and Fisher kurtosis are 8.07 1072 and 8.71 1072 for d = 10,

respectively.

Finally, the kernel is defined in accordance with the cumulative distribution of



p(r), which is the (complement of the) incomplete gamma distribution:

d [lwi—v|]?

g HWZ'_VHQ) F(WT) (3)
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yi = K(v,w;,0;) = P(

which is plotted as a function of the Euclidean distance r = ||w; — v||?, for
d=1,...,10in Fig. 1 (thick and thin dashed lines). Note that since K(.) only
depends on the Euclidean distance, the obtained kernel in the input space is

radially-symmetrical.

3 Kernel adaptation

We will now derive an “on-line” stochastic learning algorithm that adapts an
individual kernel’s parameters in such a way that the differential entropy of
the kernel output is maximized. Consider first the adaptation of the kernel

center. The entropy of the kernel output of neuron 7 can be written as:

H(y) = = [ pule) np (o) da. (4)
with py,(.) the kernel output density which, in turn, can be written as a function

of the distribution of the Fuclidean distance to the kernel center r:

() = 20, (5)

After substitution of the latter into eq. (4), we obtain:
Ayi(r)

H(y) = = [ po()pe(r) dr 4 [ pe(r) In| 250 . (6)

By performing gradient ascent on H(.), we obtain the “on-line” learning rule

for the kernel center:

8H 87“ VvV —Ww; .
Aw; = nwﬁ = Ny s, Vi, (7)

8wi (o

k3

with n,, the learning rate, after some algebraic manipulations (see Appendix).

In a similar manner, the learning rule for the kernel radius o; is obtained:

oH 1 — w;l|? .
Aai =1 o =Ne— (u - 1) 3 \V/Z7 (8)

o; do?

with 7, the learning rate.



4 Joint entropy maximization

Maximizing differential entropy alone is not sufficient when there are multiple
kernels in the map. This can be easily shown as follows. Consider a lattice of
two neurons with kernel outputs y; and y;. When eq. (7,8) would be used, e.g.,
in the case of a Gaussian input density, then the two kernels will eventually co-
incide, the neural outputs will be maximally statistically dependent, and thus
the map maximally redundant. We can formulate statistical dependency (or
redundancy) in information-theoretic terms as the mutual information between
the neuron outputs. Hence, we maximize the differential entropy given that
we also need to minimize the mutual information, in order to cope with the
kernel overlap. This dual goal is captured by maximizing the joint entropy of

the neuron outputs:

H(yr,y2) = H(ya) + H(y2) — 1(y1, y2), (9)

with H(y1,y2) the joint entropy, H(y1) and H(y2) the differential entropies, and
I(y1,y2) the mutual information. We will perform mutual information mini-
mization heuristically by putting kernel adaptation in a competitive learning
context: in this way, the winning neuron’s kernel will decrease its range — in
particular when it is strongly active — and, thus, decrease its overlap with the
surrounding kernels. In addition, we will add a neighborhood function to the
learning process, since we want to achieve topology-preserving lattices. The

learning rules are derived in the next section.

5 Topographic map formation

Consider a lattice A of N neurons and corresponding incomplete gamma
distribution kernels K(v,w;,0;),7 = 1,...,N. We introduce an activity-
based competition between the neurons, with the “winning” neuron defined

as ¢* = arg maxXv,e4 y;, rather than the more common (minimum Euclidean)



distance-based competition, ¢* = arg min; ||w; — v||, which is equivalent to our
case only when all kernels have equal radii. We supply topological information
by means of a neighborhood function A, for which we take a monotonously
decreasing function of the lattice distance from the winner. We opt for a

Gaussian neighborhood function:

Hri — I

2
A(i,7",00) = exp (—T) , (10)
A

with o, the neighborhood function range, and r; neuron ¢’s lattice coordinate.

The complete set of learning rules then becomes:

VvV —W;

Aw; = n, A(1,77, , 11

w Nw A(2,77,04) o7 (11)
_ - L (v —wi? :

Ao, = ne A4,2%,04) = ( do? -1, WV (12)

In case the neighborhood function would be omitted in eqs. (11,12), joint en-
tropy maximization will still be aimed for, but the kernels will not become
topographically organized, in particular when starting from a random initial-
ization. Hence, one could envisage the purpose of the neighborhood function
as a way to constrain the learning process so that it favors the development of

topographic maps.

Lattice-disentangling dynamics

The disentangling dynamics is exemplified in Fig. 2 for the standard case of a
square lattice and a uniform square input density. The weights were initialized
by sampling from the same input density, the radii by sampling the uniform

distribution [0,0.1]. The neighborhood range was decreased as follows:

oa(t) = opo exp <—20A0 t ), (13)

tmaz

with ¢ the present time step, t,,4» the maximum number of time steps, and

oao the range spanned by the neighborhood function at ¢ = 0. We took



tmar = 2,000,000 and o9 = 12, so that the neighborhood function vanishes
at the end of the learning process (oa (e = 4.5 x 1071%). We further took

nw = 0.01 and 5, = 107 n,,.

6 Theoretically optimal and achieved performance

The theoretically optimal performance of the kernel-based map can be derived
for two limiting cases. In the first case, we assume that the input density
consists of V Gaussians that are spaced infinitely far apart so that their overlap
is infinitesimally small (“N-Gaussians” case). We quantize the kernel outputs
yi, Vi € A, uniformly into k equally-sized and non-overlapping quantization
intervals.! The optimal solution is reached when each Gaussian is modeled
by a different kernel. The expressions for the joint entropy JE and mutual

information MI can be derived analytically:

k—1 1
k—1 kN z
MI = | — Wy _og, A ———. 1

In Fig. 3A, JE and MI are plotted as a function of N and parameterized with
respect to k. We can easily determine the asymptotes for MI when k£ — oo

(thin dashed line in Fig. 3A) and k, N — oo (dot-dashed line):

N
MI = logQ(ﬁ)N_l, for k — oo, (16)
1
MI = ~ 1.4427, for k, N — oo. (17)
log, 2

'Note that, as a result of this quantization, the aforementioned assumption
is achieved as soon as, for each neuron, the tails of the N — 1 other Gaussians
activate only the neuron’s lowest quantization interval, namely, the one that

codes for the lowest kernel output values.
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This means that, for a given number of neurons N, the mutual information
will always be finite.? Furthermore, we also see that for any number of neurons
and quantization levels, the mutual information will be bounded by the second
asymptote. Finally, note that the optimal JE and MI do not depend on the

input space dimensionality d.

The performance of our learning algorithm can be easily measured against
these theoretical results. Consider a 1-dimensional lattice (chain) of N neu-
rons, with N = 1,...,10, developed in the 1-dimensional input space. We
take NV unit-variance Gaussians, spaced 15 units apart along the real line. We
initialize the weights and radii by sampling the [0, 1] interval uniformly, and
run our learning algorithm 20 times for several (V, k)-combinations. We take
lmae = 2,000,000, opo = 12, 5, = 0.01 and 5, = 107*n,. The JE and MI
plots obtained practically coincide with the optimal ones and are not shown
in Fig. 3A: the differences between the theoretically optimal JE and MI values
and the obtained averages are smaller than, respectively, 0.005 and 0.02 ev-
erywhere. This performance was maintained for input space dimensionalities

d=1,...,10 (Fig. 3C).

In the second case, we assume that the input density consists of one Gaussian
only (“1-Gaussian” case). The expressions for the joint entropy and mutual

information can be derived analytically, for the case of k& = 2 quantization

~ 2This can be intuitively understood by observing that only the lowest quan-
tization interval accounts for all the overlap with the other kernels (see footnote
1) and that, as k increases, the activation probability of this interval becomes
more and more “unique” with respect to the activation probabilities of the
neuron’s other quantization intervals (which form an equitable distribution).
More specifically, the probability that the lowest quantization interval is ac-
tive equals M, whereas that of the other intervals equals -, from which

kN kN

follows that the mutual information will be bounded when k£ — oco.



11

levels and a 1-dimensional input space:

JE = log, 2N,
N -1 N 1
MI = log22N+2< v logQN_l—l—N)—l—
3 2N 2N -3 2N 1
N -2 —logy — 4+ —— 7) log, —, (18
( )<2N 0g2 3 —I_ 2N 0g22N—3 —I_ Og22N7 ( )

with the second term in MI being present for N > 2 only. Figure 3B shows
the JE and MI plots for different values of k; the plots for the k& > 2 cases were
determined numerically. Contrary to the N-Gaussians case, MI continues to
increase when N increases. Furthermore, the optimal JE and MI plots depend

on the input dimensionality d and are also determined numerically.

We also determine the performance of our learning algorithm for the 1-
Gaussian case. The results are summarized in Fig. 3B. The average JE results
(also for 20 runs) practically coincide with the theoretically-optimal ones (dif-
ference with optimal result < 0.02; standard deviation < 0.03). The results as
a function of the input dimensionality d are shown in Fig. 3D for £ = 2. The
average JE plots again practically coincide with the numerically determined
ones (difference with optimal result < 0.02; standard deviation < 0.025). The
standard deviations on the MI results are similar to those shown in Fig. 3B,

and are omitted for clarity’s sake.

Finally, since we are using a heuristic for mutual information minimization
(i.e., competitive learning), we can only empirically verify the performance
of the learning algorithm. We cannot formally prove that, for a given input
distribution, the algorithm is guaranteed to converge towards a solution that
will maximize the joint entropy. However, at least for the test cases considered
here, we could verify that the achieved performance was satisfactory, since the

theoretical results were available.
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6.1 Clustering

The theoretical results suggest a new type of metric for determining the number
of clusters in a data set, given that they can be appropriately modeled by
Gaussians.® If the data set can be modeled by N Gaussians, that are spaced
sufficiently far apart, then we know the theoretically optimal joint entropy
(¢f., the N-Gaussians case). We also know that a mismatch in the number of
neurons leads to a higher joint entropy: the JE values of the N-Gaussians case
are always smaller than the corresponding values for the 1-Gaussian case (e.g.,
%log2 2N + % < log,2N, for N > 1, k = 2). Hence, the N-Gaussians case will
be our “null” distribution, and the corresponding optimal joint entropy our

reference value. We suggest the following clustering procedure:

for (N < 1; N < max_number_of_clusters; N 4 1)
develop a topographic map with N kernels and determine JE
determine the difference with JE eq. (14), assuming N Gaussians, one for
store the JE difference

select N with the smallest JE difference

The advantage of this procedure is twofold. First, we can still consider the
one-cluster case, which is lacking in most clustering methods (Gordon, 1999).
Second, our reference value is a theoretical result, instead of an estimate, as,
e.g., in the case of the Gap statistic, which looks at the point where the differ-
ence between two values of an intracluster distance metric becomes maximal,
one for the given sample set and another for a reference set (Tibshirani et al.,

2001).

In order to test our procedure, we re-apply the benchmark Tibshirani and co-
workers used for the Gap statistic. We consider 2 one-dimensional Gaussians
*Note that, in practice, single clusters can be appropriately modeled by

log-concave functions, such as Gaussians.

each kernel
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with equal standard deviations, and vary the (Bayesian) overlap rate. For
each overlap rate, we train our one-dimensional lattices in batch mode on 100
samples — 50 from each Gaussian —, and determine the configuration N for
which JE is minimal, as explained above. We repeat this experiment 20 times,
for different 100 sample sets, determine the probability that the correct number
of clusters is found, and plot this probability as a function of the overlap rate.
The result is shown in Fig. 4 (thick continuous line). We observe a marked
drop in performance at about 18 % overlap rate, which is close to the point
where the sum of two Gaussians becomes unimodal. The Gap statistic, using
the Euclidean distance metric, is applied to the kernel centers, and also to the
case where the weights are determined with the k-means clustering algorithm.
The results are shown in Fig. 4 (thin continuous and dashed line, respectively).
We now observe a gradual decrease in performance for an increasing overlap
rate, until it drops below “chance” level (dot-dashed line), since the choice is

in practice between one or two clusters.

7 Connection with Kullback-Leibler divergence

There is an interesting connection between joint entropy maximization, given
our incomplete gamma distribution kernels, and the Kullback-Leibler diver-
gence minimization, given heteroscedastic Gaussian kernels. The Kullback-
Leibler divergence KL (also called relative- or cross-entropy) is a frequently
used metric for assessing the quality of a density estimate. It is defined as

follows:

KL = —/1ogf% p(v) dv, (19)

with p(v) the true input density and p(v) the estimated density. It is always a

nonnegative number, and it will equal zero if and only if the density estimate

is identical to the true density.
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Assume that we perform a Gaussian mixture density modeling with equal
mixings:
1 N exp (_Mﬁ)

plv) = _2:1 (QW)gJZ

< , (20)

with w; and o; the :th Gaussian’s center and radius, respectively. The “opti-
mal” density estimate is determined by minimizing KL.. We need the partial

derivatives with respect to the centers and radii:

oKL 1 0Jp(v]|O) B

ow: /( v|©) ow, )p(v)dv_ﬂ’ (21)
OKL 1 9p(v|e) B |

i _/< Ao} Bo. )p(v) dv =0, ¥, (22)

with © = {[w;], [0:]}, the parameter vector of the density model. Stochas-
tic approximation (Robbins and Munro, 1951) can be invoked to solve these

equations, which leads to the following learning rules:

Aw, =y Bvli) Y2,

g;

Ao; = Iv=wil® ) 24
g, = T ( |)O' do? 5 Ly (“ )

after some algebraic manipulations (see Appendix). The parameter ]5(V|z) rep-
resents the 1th neuron’s posterior probability. When we take for ﬁ(v|z) = 6;4x,
with ¢* the neuron that wins the competition, and introduce the conventional
neighborhood function, since we wish to achieve a topology-preserving map-

ping, we obtain the following learning rules:

Awi = g Ao YD), (25)
a;
Ao, = 1, A(4,1%,04) U_Z' (T -1, V. (26)

Apparently, these learning rules correspond to those of eqs. (11,12), except
for the constant factor d in eq. (26), but this can be absorbed by the learn-

ing rate 7,. Hence, at least for our incomplete gamma distribution kernels,
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and our activity-based definition of “winner”, joint entropy maximization and
Kullback-Leibler divergence minimization seem to be equivalent. This is a po-
tentially interesting observation for density estimation since the log-likelihood
of the training samples will equal the Kullback-Leibler divergence, when the
number of training samples goes to infinity, and when the sample generating

process is ergodic (for references, see Yin and Allinson, 2001).

As an example, we consider the distribution shown in Fig. 5A (quadrimodal
product distribution). We have used this example before as a benchmark for
comparing the density estimation performance of a series of kernel-based and
kernel-extended topographic map formation algorithms (chapter 5, Van Hulle,
2000). The analytic equation of the distribution is, in the first quadrant,
(—logv1)(—log vq), with (v1,vqe) € [0,1]%, and so on. Each quadrant is chosen
with equal probability. The resulting asymmetric distribution is unbounded
and consists of four modes separated by sharp transitions (discontinuities),
which makes it difficult to model. The support of the distribution is bounded
by the unit square [—1,1]%. We take a 24x24 lattice and train it until ¢,,,, =
1,000,000 in eq. (13). The density estimate is obtained by using eq. (20), with
w; and o; as determined with our learning algorithm. The result is shown
in Fig. 5B. The Kullback-Leibler divergence is 19.2; the Mean Squared Error
(MSE) between the estimated and the theoretical distribution is 5.08 x 1072
For comparison’s sake, we have also considered the classic Variable Kernel
(VK) density estimation method (Silverman, 1992), which puts a Gaussian
kernel at each input sample, and which adapts the kernel range to the local

sample density.? The Kullback-Leibler divergence is 80.4 (MSE = 7.12 x 1072)

*Technically, we take for the sensitivity parameter of the VK method, a = %,
as suggested by Breiman and coworkers (Breiman et al., 1977). The pilot
estimate was determined by using the (kth) nearest-neighbor method with

k =M (Silverman, 1992).
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for M = 500 samples, 38.6 (MSE = 5.92 x 107%) for M = 2000 samples, 28.6
(MSE = 5.57 x 1072?) for M = 5000 samples, and 21.4 (MSE = 5.35 x 1072)
for M = 10,000 samples. Hence, apparently many more kernels are needed to
match our learning algorithm’s performance. Finally, in order to see the effect
of our activity-based WTA competition, ¢* = arg maxy;cay;, we have also
trained our lattice using the classic distance-based rule, i* = arg min; ||w; — v||
(and with the radii adapted as in eq. (12)). The resulting density estimate
is shown in Fig. 5C. The Kullback-Leibler divergence is now 84.7 (MSE =

5.13 x 107%), which is again inferior to our initial result.

8 Correspondence with other kernel-based topographic map

algorithms

The Soft Topographic Vector Quantization (STVQ) algorithm (Graepel et al.,
1997) performs a fuzzy assignment of input samples to lattice neurons, similar
to fuzzy clustering. It also serves as a general model for probabilistic, SOM-
based topographic map formation since several algorithms can be considered
as special cases, including Kohonen’s Batch Map version (Kohonen, 1995).
Our learning algorithm is different in at least three ways. First, the STVQ
kernel represents a fuzzy membership (in clusters) function, i.e., the softmax
function, normalized with respect to the other lattice neurons. In our case, the
kernel represents a cumulative distribution function, which operates in the in-
put space, and determines the winning neuron. Second, instead of using kernels
with equal radii in the STVQ algorithm, our radii are individually adapted.
Third, the kernels also differ conceptually since in the STVQ algorithm, the
kernel radii are related to the magnitude of the noise-induced change in the
cluster assignment (thus, in lattice space), whereas in our case they are related
to the radii of the incomplete gamma distribution kernels and, by consequence,

to the standard deviations of the assumed Gaussian local input densities (thus,
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in input space).

In the Kernel-based Soft Topographic Mapping (STMK) algorithm (Graepel et
al., 1998), a non-linear transformation, from the original input space to some
“feature” space, is introduced that admits a kernel function, e.g., a Gaussian.
The topographic map’s parameters (“weights”) are expressed as linear com-
binations of the transformed inputs, so that the map is in effect developed in
the feature space, rather than in the input space directly, as in our approach.
Other points of distinction are that the kernels’ parameters are not updated
in the STMK algorithm, and that the inputs are assigned in probability to
neurons. In Andras’ approach (2001), the Gaussians serve as a non-linear
transformation, mapping the input vectors to a high-dimensional space, so
that the boundaries between the input classes are linearized. The kernel radii
are adapted individually so that the map’s classification performance is op-
timized, an operation that requires supervised learning. This basically sets

Andras’ approach apart from ours.

In the kernel-based Maximum Entropy learning Rule (kMER) (Van Hulle,
1998), the kernel outputs are thresholded (0/1 activations) and, depending
on these binary activations, the kernel centers and radii are adapted. In
the current approach, both the activation states as well as the learning rules

eqs. (11,12) depend on the continuously graded kernel outputs.

In the approach of Benaim and Tomasini (1991), the weights are adapted
in such a manner that the Kullback-Leibler divergence is minimized, given
a homoscedastic Gaussian mixture density model. Furthermore, in order
to achieve a topology-preserving mapping, a smoothness term of the form
A(2,7*)(w; — wy+) is added to the weight update rule, with the winning neuron
i* defined by a distance-based WTA rule. Recently, Yin and Allinson (2001)

re-considered Benaim and Tomasini’s idea, and extended it by also adapting
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the radii of the Gaussian kernels. Yin and Allinson’s neighborhood function
basically corresponds to the ]3(V|Z) term in eqgs. (23,24), which is in input space
coordinates, instead of in lattice space coordinates, as in our case (c¢f., A(.) in
eqs. (25,26)). Furthermore, the winning neuron ¢* is the one for which the
Gaussian kernel output is maximal. In general, this leads to quite different

results.

9 Conclusion

We have developed a new learning algorithm for kernel-based topographic map
formation. The algorithm is aimed at maximizing the joint entropy of the
map’s output. We have formulated the theoretically optimal joint entropy
performance for two example input distributions, which we used for assessing
the algorithm’s performance, and also for suggesting a new type of clustering
algorithm. Finally, we have shown the correspondence with stochastic gradient
descent on the Kullback-Leibler divergence, in the case of a heteroscedastic

Gaussian mixtures density model.
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Appendix

Derivation of learning rules egs. (7,8)

We first consider the update rule for the kernel centers. The first term on the
right hand side of eq. (6) does not depend on the kernel center. Hence, we only
need to further concentrate on the second term, which in fact corresponds to
the expected value of its In component. Entropy maximization can be achieved
by considering the training set of r’s to approximate the density p,(r), which
leads to the “on-line” stochastic gradient ascent learning rule:

_9H ar _ (oy\T" 9 [0y .
Awl_nwﬁawﬁ"”(ar) awz(ar)’ vi. (27)

After some algebraic manipulations, we obtain:

dyi -2 i (2)?
- —exp(—2h), (25)

o T(35)(V20))

of which also the derivative with respect to w; is needed. For the one dimen-

sional case (d = 1), this leads to:

UV — Ww;

Aw; =y o Ve, (29)

7

when using eq. (3). For d > 1, we obtain the same term on the right hand

side, and a second one: (d—1) ”:__VVVV:H2. This more complex rule also converges
towards the centroid of the inputs that activate neuron 7. It is reasonable to
omit this second term, in order to keep the learning rule simple. Indeed, we
know that E[||v — w;||*] = do?, for a Gaussian input distribution, when w;
converges to the Gaussian’s mean and o; to its standard deviation. Hence,
the second term is expected to be smaller than the first term. We can also
motivate the omission in the following manner. Since a d-dimensional radially-
symmetrical Gaussian distribution can be built up by taking d samples — one for

each input dimension — of a 1-dimensional Gaussian with the same radius, when

the updates Aw;; are small, and when we update along each input dimension



23

separately, e.g., in random order, then we can approximate the learning rule

by the simpler one eq. (7).

The update rule for the kernel radii eq. (8) can be derived directly, without
any approximations, by performing gradient ascent on the differential entropy

H, after some algebraic manipulations.

Derivation of learning rules eqs. (23,24)

We first consider the derivation of the update rule for the kernel centers,
eq. (23). Since the true input density p(v) is not known, Robbins-Munro
stochastic approximation can be invoked in order to solve eq. (21). This leads

to:

o 1 0Jp(v|®) .
Aw; = n, F0) owi V. (30)

Working out the derivative @v'—_@l yields:

ow

ap(v]O) :pi(sz')(V;igWi)a (31)

with p;(v]6;) 2 ( L —exp (— o 2) and 0; = {w;,0;}. Bayes’ rule tells us
27)% i

P; pi(v]6:)

PV =58y

(32)

with P, the prior probability, i.e., the :th mixing parameter in our Gaussian
mixture. Now since we have assumed equal mixings in eq. (20), /ﬁl is constant.

Substituting eqs. (31,32) in eq. (30) leads to the end result given in eq. (23).

In a similar way, the update rule for the kernel radii eq. (24) is obtained.
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Figure captions

Fig. 1: Distribution functions of the Euclidean distance r from the mean of
a unit-variance, radially-symmetrical Gaussian, parameterized with respect to
the dimensionality d (continuous lines), and the corresponding complements of
the cumulative distribution functions (dashed lines). The functions are plotted

for d = 1,...,10 (from left to right); the thick lines correspond to the d = 1

case.

Fig. 2: Evolution of a 24 x 24 lattice as a function of time. Left column: evo-
lution of the kernel weights. Right column: evolution of the kernel radii. The
boxes outline the uniform input probability density. The values given below

them represent time.

Fig. 3: (A,B) Optimal joint entropy (JE — thick continuous lines) and mutual
information (MI — thick dashed lines) for the case of N lattice neurons and
N 1-dimensional Gaussians spaced infinitely far apart (A), and for the case of
only one 1-dimensional Gaussian (B). Results are plotted as a function of the
number of neurons N, parameterized with respect to k& = 2,4,8,16,32 quan-
tization levels, with the £ = 2 curves being the lowest and the £ = 32 curves
being the highest ones. The thin dashed line in (A) denotes the MI plot for
the case where k — oo; the dot-dashed line the case where k, N — oo. The
thin continuous line in (B) is the average MI result obtained with the learning
algorithm (including error bars).

(C) Simulation results obtained for JE, for the N Gaussians case with k = 2,
plotted as a function of the dimensionality d and parameterized with respect to
the number of lattice neurons N, N =1,2,...,10. The thick line corresponds

to N =1 case, the upper line to N = 10.
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(D) Optimal JE and MI (thick continuous and dashed lines, respectively) for
the 1-Gaussian case, plotted as a function of d. Note that MI = 0 for NV = 1.
The thin continuous line is the average MI result (error bars omitted) obtained

with our learning algorithm. Other conventions are as in Fig.3C.

Fig. 4: Clustering based on the difference between expected and obtained joint
entropy (thick continuous line), and based on the Gap statistic applied to ker-
nel weights (thin continuous line) and applied to the k-means clustering result

(dashed line).

Fig. 5: Two-dimensional quadrimodal product distribution (A), and density
estimate obtained with our kernel-based topographic map learning algorithm
(B), and when in our learning algorithm a distance-based competition is used

instead of an activity-based (C).
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