Neural Computation no. 2391R

Kernel-based topographic map formation

by local density modeling

Marc M. Van Hulle

K.U.Leuven, Laboratorium voor Neuro- en Psychotfysiologie
Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, BELGIUM

E-mail: marc@neuro.kuleuven.ac.be

June 3, 2002

Rather than developing topographic maps with disjoint and uniform activation
regions (Voronoi tessellation), such as in the case of the popular Self-Organizing
Map (SOM) algorithm (Kohonen, 1995), and its adapted versions, algorithms
have been introduced that can accommodate neurons with overlapping activa-
tion regions, usually in the form of kernel functions, such as radially-symmetric
Gaussians. For these kernel-based topographic maps, as they are called, sev-
eral learning principles and -schemes have been proposed (for a review, see
Van Hulle, 2000). One of the earliest examples is the elastic net of Durbin
and Willshaw (1987), which can be viewed as a Gaussian mixture density
model, fitted to the data points by a penalized maximum likelihood term. The
standard deviations of the Gaussians (“radii”) are all equal, and are gradu-
ally decreased over time. More recently, Bishop et al. (1998) introduced the
Generative Topographic Map, which is based on constrained Gaussian mixture
density modeling, constrained since the Gaussians cannot move independently
from each other (the map is topographic by construction). Furthermore, all
Gaussians have an equal and fixed radius. Sum and co-workers (1997) max-

imized the correlations between the activities of neighboring lattice neurons.

The radii of the Gaussians are under external control, and are gradually de-
creased over time. Graepel and co-workers introduced the Soft Topographic
Vector Quantization (STVQ) algorithm, and showed that a number of proba-
bilistic, SOM-related topographic map algorithms can be regarded as special
cases (Graepel et al., 1997). The Gaussian kernel represents a fuzzy mem-
bership (in clusters) function, and its radius, which is equal for all neurons,
is again under external control (deterministic annealing). In the kernel-based
Maximum Entropy learning Rule (kMER) (Van Hulle, 1998), the outputs of
the Gaussians are thresholded, and the radii individually adapted so as to make
the neurons (supra-threshold) active with equal probabilities (equiprobabilis-
tic maps). In the Kernel-based Soft Topographic Mapping (STMK) algorithm
(Graepel et al., 1998), a non-linear transformation is introduced that maps the
inputs to a high-dimensional “feature” space, and that, in addition, admits a
kernel function — an idea borrowed from Support Vector Machines (SVMs)
(Vapnik, 1995; Scholkopf et al., 1999). The kernel operates in the original input
space but its parameters are not modified by the algorithm. This connection
with SVMs was taken up again by Andras (2001), but with the purpose of
linearizing the class boundaries. The kernel radii are adapted individually so
that the map’s classification performance is optimized (using supervised learn-
ing). Yin and Allinson (2001) proposed an algorithm aimed at minimizing the
Kullback-Leibler divergence (also called relative- or cross-entropy) between the
true and the input density estimate obtained from the individually-adapted
Gaussian kernels in the topographic map. In this contribution, we propose
a still different approach: the Gaussian kernels are adapted individually, and
in an unsupervised manner, but in such a way that their centers and radii

correspond to those of the assumed Gaussian local input densities.

Let A be a lattice of N formal neurons and V C R? the input space. To each

neuron ¢ € A corresponds a weight vector w; = [w;1,...,wy] € V and a lattice
coordinate r; € Vi, with V4 the lattice space (we assume discrete lattices with
regular topologies). As an input to lattice space transformation, we take one
which admits a kernel function: (U(v), ¥(w;)) = K(v,w;), with v € V, ¥ the
transformation, and (.,.) the internal product operator in V4. We prefer to
use Gaussian kernels:

2
20'2'

_ 12
K(v.wiro0) = exp (_M) | 1)

When performing topographic map formation, we require that the weight vec-

tors are updated so as to minimize the expected value of the squared Euclidean

distance ||v—w,||? and, hence, following our transformation W, we instead wish

to minimize |¥(v) — ¥(w;)||?, which we will achieve by performing gradient

descent with respect to w;. We first determine the gradient:

5,

aWi

N0 = WP = oo K (i w2, + 5 K (3,0 — 2

Hence, the learning rule for the kernel centers w; becomes (without neighbor-

hood function — see further):

(v —w;)

2
a;

AWZ' = Nw [X’(V,Wi,di), (3)

with 7,, the learning rate. The equilibrium weight vector can be written as:

€q

v K(v,wi o) plv) dv
- A 4
W T Rvowi o) pv) dv . €A)

i.e., the center of gravity of K(.)p(.), or, when we define the product of
the input density and the Gaussian kernel as a new, local input density
p*(v) = K(v,w;% o;)p(v) — note that p* is normalized by the denomina-

tor in eq. (4) —, then we can re-write the equilibrium weight vector as:

I((V7 Wi, Ji)

(2)

w;? = (v),». In order to achieve a topology-preserving mapping, we mul-

tiply the right hand side of eq. (3) with a neighborhood function A(¢,%*),
with ¢* = argmaxvea (K(v,w;,0;)), i.e., an activily-based definition of
“winner-takes-all”, rather than a minimum Fuclidean distance-based defini-

;%

tion (:* = argmin; ||w; — v||), which is usually adopted in topographic map

formation. The equilibrium weight vector now becomes:

e _ Jyv AL K(v,wi,0i) p(v) dv
C Al K(v,wioy) p(v) dv

w

We now derive the learning rule for the kernel radii o;. We consider two steps.

First, we perform gradient descent on || ¥(v)— W¥(w;)||?, but now with respect

to o;, so that, after some algebraic manipulations:

— w2
Ao Il

a;

I((V,Wi,di), A € A. (6)

Second, we wish each radius o; to correspond to the standard deviation of a d-
dimensional Gaussian input distribution centered at the (equilibrium) weight
vector of neuron z so that, together with the latter, the assumed Gaussian
local input density is modeled. Now since the expected value of the Euclidean
distance to the center of a d-dimensional Gaussian can be approximated as v/do
for d large (Graham et al., 1994),' the radius update rule becomes (without
neighborhood function):

Ao; = ngi (”V_Jizw"? - pd) K(v,wi,0;), Vi€ A, (7)

a; .

with 7, the learning rate. The scale factor p (a constant) is designed to relax
the local Gaussian (and d large) assumption in practice. The equilibrium
condition for the kernel radii can be written as:

w2 K L
prer = LIV = will? K(v, win o) pv) dv gy ®)
pd v K(v,w;,0;7) p(v) dv

Note that the Fuclidean distance distribution is chi-squared with # = 2 and

o= % degrees of freedom.

2eq _
S =

i.e., the moment of inertia of p* (without the pl—d term), or for short: o
pl—d<HV — w;||?),+. Finally, similar to the weight update rule, we multiply the
right hand side of eq. (7) with our neighborhood function A(.). The corre-

sponding equilibrium radius then becomes:

O_ZZeq — LII/A(%Z*) ”V._ W2H2]((V72Wi70-i26q) p(V) dV’ Vi € A. (9)
pd Jy Aliin) K(v,wi07) plv) dv

Equations (5) and (9) are in the form in which the so-called iterative contrac-
tion mapping (fixed-point iteration), used for solving non-linear equations, can
be directly applied (thus without learning rates).? Such an iterative process
is, at least for the weights, reminiscent of the so-called “Batch Map” version
of the SOM algorithm (Kohonen, 1995; Mulier and Cherkassky, 1995). This
observation leads us to the Soft Topographic Vector Quantization (STVQ) al-
gorithm (Graepel et al., 1997), a general model for probabilistic, SOM-based
topographic map formation, since several algorithms can be considered as spe-
cial cases, including Kohonen’s Batch Map version. In Appendix 1, we detail
the correspondence of our learning scheme, which we further call the Local
Density Estimation (LDE) algorithm, with the STVQ, the Batch Map, and
also the Kernel-based Soft Topographic Mapping (STMK) algorithm (Graepel
et al., 1998).

As an example, consider the standard case of a 10x10 lattice, trained on
samples drawn from the uniform distribution in the unit square (0,1]%. The
weights are initialized by sampling the same distribution; the radii are initial-
ized by randomly sampling the (0, 1] range. We use a Gaussian neighborhood
function: A(z,7*,04) = exp (—“%Ui) , with o the neighborhood radius,
mt, strictly speaking, since we opt for a “winner-takes-all” rule, for

computational reasons, we should integrate over the subspace of V' that leads

to an update of neuron :’s kernel parameters.

and r; neuron ¢’s lattice coordinate. We adopt the following neighborhood
cooling scheme: oa(t) = opgexp (—QO'AOﬁ) , with ¢ the present and {,,,,
the maximum number of time steps, and oag the radius at ¢ = 0. We take
tmaz = H00,000, opo = 5, 1, = 0.01 and 5, = 0.02n,,, and p = 0.4. The results
are shown in Fig. 1. We observe that, prior to the lattice disentangling phase,
the kernel radii grow rapidly in size and span a considerable part of the input
distribution. Furthermore, for larger p, the lattice disentangles more rapidly,
and the radii at convergence are larger. Hence, what happens in case the radii
are forced to stay small: will the lattice still disentangle? This is exemplified in
Fig. 2 for the same initial weight distribution, but with the radii kept constant.

The lattice disentangles albeit at a much slower rate ({,,., = 2M).

We will now explore the density estimation performance of our LDE algorithm
by using samples drawn from the distribution shown in Fig. 3A (quadrimodal
product distribution). We will also use this case as a benchmark for comparing
the performances of two modified versions of our algorithm, and of four other
kernel-based topographic map formation algorithms. The analytic equation
of the product distribution is, in the first quadrant, (—logv;)(—logvy), with
(vi,v2) € (0,1]%, and so on. Each quadrant is chosen with equal probability.
The resulting asymmetric distribution is unbounded and consists of four modes
separated by sharp transitions (discontinuities), which makes it difficult to
model. The support of the distribution is bounded by the unit square [—1, 1]2.
We take a 24x24 lattice, and train it in the same way as in the previous
example, but with ¢,,,, = 1,000,000, n, = 0.01 and 5, = 0.1n,,. The density
estimate is obtained by taking the sum of all (equal-volume) Gaussian kernels
at convergence, normalized so as to obtain a unit-volume density estimate.
The result is shown in Fig. 3B. The Mean Squared Error (MSE) between the

estimated and the theoretical distribution is 6.23 x 1072,

In order to explore the contribution of our activity-based competition rule,
¥ = arg max; y;, we also train our lattice using the classic Euclidean distance-
based rule, 1* = arg min; ||w; — v||, but with the radii adapted as before, using
eq. (7) (“LDE min Eucl” case in Table 1). The MSE is now 6.77 x 1072,
which is inferior to our initial result. Furthermore, in order to see the effect of
individually adapting the kernel radii, we also consider the case where the radii
are equal and kept constant during learning (“LDE fixed radii” case). But
here the following problem arises, as in other algorithms that do not adapt
the kernel radii: how to choose this radius, since it directly determines the
smoothness of the density estimate? In order not to have to rely on a separate
optimal smoothness procedure, which could bias our results, we determine
the (common) kernel radius for which the MSE between the estimated and
the true, theoretical distributions is minimal. In this way, we at least know
that a better MSE result cannot be obtained. The “optimal” MSE found is
9.78 x 1072 for g4y = 0.195 (optimized in steps of 5 x 107%). The result is
shown in Fig. 3C. This clearly shows the advantage of adapting the kernel radii

individually to the local input density.

For the sake of comparison, we also consider four other kernel-based topo-
graphic map algorithms, provided that their kernels specify a density estimate
in the input space directly. We use the following algorithms: the kernel-based
Maximum Entropy learning Rule (kMER) (Van Hulle, 1998), the algorithm of
Yin and Allinson (2001), and the STVQ and Soft-SOM (SSOM) algorithms
(Graepel et al., 1997). All simulations are run on the same input data, using
the same cooling scheme (except for the SSOM and STVQ algorithms, see fur-
ther), and the same number of iterations, as before. For the STVQ algorithm,
we take for the neighborhood function radius o, = 0.5, and for the equal and

1

constant kernel radii (“temperature parameter”) = = 0.01, as suggested in

Wl

(Graepel et al., 1997).% We also adopt these parameter values for the SSOM
algorithm, since it is in fact a limiting case of the STVQ algorithm (see Ap-
pendix 1). Furthermore, again for the SSOM and STVQ algorithms, since they
do not adapt their kernel radii, we look for the (common) kernel radius that
optimizes the MSE between the estimated and the theoretical distributions,
as explained above. The result for the STVQ algorithm is shown in Fig. 3D.
Finally, we also consider the original SOM algorithm, add Gaussian kernels at
the converged weight vectors, and look for the (common) kernel radius that
minimizes the MSE. The results for these algorithms are summarized in Table

1, together with the parameters used.

The density estimation facility described above can be used for visualizing
clusters in data distributions by performing density-based clustering in lattice
space. For each neuron in the lattice, the density estimate at the neuron’s
weight vector is determined, and the result displayed graphically, on a rela-
tive scale, in the lattice. Clusters then correspond to high-density regions in
the lattice, and they can be found and demarcated by a procedure such as
hill-climbing (see caption of Fig. 3E,F). An efficient, tree-based hill-climbing
algorithm is given in Appendix 2. This procedure could be regarded as an
alternative to the gray level clustering procedure that has been devised for the
SOM, and used for data mining purposes (Kohonen, 1995; Lagus and Kaski,
1999). Here, for each neuron, the average distance to the weight vectors of the
neuron’s lattice neighbors is determined, rather than a local estimate of the
input density. Finally, density-based clustering itself can be regarded as an al-
ternative to the (usually Euclidean) distance-based similarity criterion, that in

most cases is adopted for clustering with competitive learning and topographic

*Note that our input distribution also spans the unit square [—1,1]?, as in

(Graepel et al., 1997).

maps (Luttrell, 1990; Rose et al., 1990; Graepel et al., 1997): distance-based
clustering assumes that the cluster shape is hyperspherical, at least for the Eu-
clidean case, whereas density-based clustering does not make any assumptions

about the cluster shape.

Acknowledgments

M.M.V.H. is supported by research grants received from the Fund for Scien-
tific Research (G.0185.96N), the National Lottery (Belgium) (9.0185.96), the
Flemish Regional Ministry of Education (Belgium) (GOA 95/99-06; 2000/11),
the Flemish Ministry for Science and Technology (VIS/98/012), and the Eu-
ropean Commission, 5th framework programme (QLG3-CT-2000-30161 and
IST-2001-32114).

10

References

Andrés, P. (2001). Kernel-Kohonen networks. Int. J. Neural Systems, submit-
ted.

Bishop, C.M., Svensén, M., and Williams, C.K.I. (1998). GTM: The generative
topographic mapping. Neural Computat., 10, 215-234.

Durbin, R., and Willshaw, D. (1987). An analogue approach to the travelling
salesman problem using an elastic net method. Nature, 326, 689-691.
Graepel, T., Burger, M., and Obermayer, K. (1997). Phase transitions in

stochastic self-organizing maps. Physical Rev. F, 56(4), 3876-3890.

Graepel, T., Burger, M., and Obermayer, K. (1998). Self-organizing maps:
Generalizations and new optimization techniques. Neurocomputing, 21,
173-190.

Graham, R.L., Knuth, D.E., and Patashnik, O. (1994). Answer to prob-
lem 9.60 in Concrete Mathematics: A Foundation for Computer Science.
Reading, MA: Addison-Wesley.

Kohonen, T. (1995). Self-organizing maps. Heidelberg: Springer.

Lagus, K., and Kaski, S. (1999). Keyword selection method for characterizing
text document maps. Proc. [CANN99, 9th Int. Conf. on Artificial Neural
Networks, IEE: London, Vol. 1, pp. 371-376.

Luttrell, S.P. (1990). Derivation of a class of training algorithms. [FEFE
Trans. Neural Networks, 1, 229-232.

Mulier, F., and Cherkassky, V. (1995). Self-organization as an iterative kernel
smoothing process. Neural Computat., 7, 1165-1177.

Rose, K., Gurewitz, E., and Fox, G.C. (1990). Statistical mechanics and phase
transitions in clustering. Phys. Rev. Lett., 65(8), 945-948.

Scholkopf, B., Burges, C.J.C., and Smola, A.J. (1999). Advances in kernel

methods. Support vector learning. Cambridge, MA: MIT Press.

11

Sum, J., Leung, C.-S., Chan, L..-W., and Xu, L. (1997). Yet another algorithm
which can generate topography map. I[FEE TNNS, 8(5), 1204-1207.

Van Hulle, M.M. (1998). Kernel-based equiprobabilistic topographic map for-
mation. Neural Computat., 10(7), 1847-1871.

Van Hulle, M.M. (2000). Faithful representations and topographic maps: From
distortion- to information-based self-organization. New York: Wiley.
Vapnik, V.N. (1995). The nature of statistical learning theory. New York:

Springer-Verlag.
Yin, H., and Allinson, N.M. (2001). Self-organizing mixture networks for prob-

ability density estimation. IKEFE Trans. Neural Networks, 12, 405-411.

12

Appendix 1: Correspondence with STVQ, SOM and STMK

algorithms

The Soft Topographic Vector Quantization (STVQ) algorithm (Graepel et al.,
1997) performs a fuzzy assignment of data points to clusters, whereby each
cluster corresponds to a single neuron. It also serves as a general model for
probabilistic, SOM-based topographic map formation. The weight vectors
represent the cluster centers, and they are determined by iterating the following

equilibrium equation (put into our format):

wer = v VE AL G)P(v € C)) plv) dv
Z Jy S A 5)P(v €C)) p(v) dv '

Vi e A, (10)

with P(v € C;) the assignment probability of data point v to cluster C; (i.e.,
the probability of “activating” neuron j), which is given by:

exp (2 Su AL E) IV — we)?)

PVEC]‘ ==)
) = e (L ALK v — wall)

(11)

with 3 the inverse temperature parameter, and A(z, 7) the transition probabil-
ity of the noise-induced change of data point v from cluster C; to C;. A number
of topographic map algorithms can be considered as special cases by putting
B — oo in eq. (11), and A(z,j) = 6;; in eq. (11) and/or eq. (10). For example,
the Soft-SOM (SSOM) algorithm (Graepel et al., 1997) is obtained by putting
A(,7) = é;; in eq. (11), but not in eq. (10). Kohonen’s Batch Map version
(Kohonen, 1995; Mulier and Cherkassky, 1995) is obtained for # — oo and
A(7,7) = &;; in eq. (11), but not in eq. (10), and for * = arg min; ||v — w;||?
(i.e., distance-based “winner-takes-all” rule).

Our LDE algorithm is different from the STVQ algorithm in three ways. First,
in the STVQ algorithm, the “kernel” P(.) in eq. (11) represents a fuzzy member-

ship (in clusters) function, i.e., the softmax function, normalized with respect

to the other neurons in the lattice, with the degree of fuzzification depend-

13

ing on . In our case, the kernel K(.) operates in the input space, instead
of the (discrete) lattice space, and represents a local density estimate.* Our
algorithm is also different from Kohonen’s Batch Map by the definition of the
kernel, which is in Kohonen’s case the neighborhood function A, whereas in
our case we have both K(.) and A(.), and by the definition of the winner ¢*

(distance- wvs. activity-based). Second, instead of using “kernels” P(.) with

equal radii %, with 3 externally controlled (deterministic annealing or “cool-
ing”), our radii differ from one another and are individually adapted. Third,
the kernels also differ conceptually since, in the STVQ algorithm, the kernel
radii are related to the magnitude of the noise-induced change in the cluster
assignment (thus, in lattice space), whereas in our case, they are related to the

standard deviations of the local input density estimates (thus, in input space).

In the Kernel-based Soft Topographic Mapping (STMK) algorithm (Graepel
el al., 1998), a non-linear transformation W, from the original input space
V to some “feature” space F, is introduced that admits a kernel function:
(U(x),¥(y)) = K(x,y), with K(.), e.g., a Gaussian, and with (.,.) the internal
product operator in F-space. The topographic map’s parameters (“weights”)
are expressed in this feature space, as linear combinations of the transformed
inputs: w; = Ef\le a,;V(v*), given a batch of M input samples {v*}. The
coefficients a,; are determined by iterating an equilibrium equation. Further-

more, as in the STVQ algorithm, soft assignments of the inputs to clusters are

made, P(v* € C;).

Our algorithm differs in several ways from the STMK algorithm. First, the
topographic map’s parameters a,; are developed in the feature space F, rather

than in the input space V', as in our LDE algorithm. Second, the STMK algo-

*Technically, the “kernel” in the STVQ algorithm represents a probability

distribution, whereas our kernel represents a probability density.

14

rithm does not update the kernels’ parameters. In fact, when initializing the
STMK algorithm, the kernel-transformed data {K(v*,v")} are determined,
and they replace the original input data (see p. 182 in Graepel et al., 1998). In
our LDE algorithm, both the kernel centers and the kernel radii are updated
during learning. Third, the (transformed) inputs are assigned in probability
to clusters in the STMK algorithm, whereas in our case, the (original) inputs

are assigned with an activity-based “winner-takes-all” rule.

15

Appendix 2: Tree-based hill-climbing algorithm

Conventions: ID= lattice number of a neuron; Top= lattice number of the
neuron which has the highest density estimate of all k41 neurons in the current
hypersphere; Ultimate Top= lattice number of the neuron which represents a

local maximum in the input density.

/* Three types of nodes:
leaves: (0,1ID, successor,top)

nodes : (predecessor, ID, successor, top)

tops : (predecessor, ID, ID, ID)/*

/* Initialize all neurons, by labeling them all as leaves */
for(1 = 1;: < N;i<=1+41)
label]i] < (0,4,0,0)
/* Search for all neurons the top of the cluster they belong to */
/* and with respect to the k nearest neighbors (parameter)*/
for(1 = 1;: < N;i<=1+41)
if(label[z].successor == 0)
/* Neuron pointer is not processed until now */
pornter < i
/* pointer will point to the neuron currently being processed */
while(label[pointer].ID | = label[pointer].successor)
top <= MaxNeighbor(pointer, k)
label[pointer].successor <= top
if(top ! = pointer)
/* pointer is not ultimate top-neuron of cluster */
label[top].predecessor <= pointer

pointer <= top

16

else
label[top].top < top
if(label[pointer].successor ! = 0)
/* Current neuron is processed and leads to a top */
/* No further processing is needed = quit while-loop */
/* First give all parsed neurons ID of ultimate top */
top < label]pointer].top
while(label[pointer].predecessor = 0)
pointer < label[pointer|.predecessor
label[pointer|.lop < top
break

17

Figure captions

Fig. 1: Evolution of a 24 x 24 lattice as a function of time. The circles
demarcate the areas spanned by the standard deviations (“radii”) of the cor-
responding Gaussian kernels. The boxes correspond to the range spanned by

the uniform input density. The values given below the boxes represent time.

Fig. 2: Evolution when the radii are kept constant at a value of 0.1. Same

conventions as in Fig. 1.

Fig. 3: (A-D) Density estimation with kernel-based topographic maps. Two-
dimensional quadrimodal product distribution (A), and the density estimates
obtained with our learning algorithm, when adapting the kernel radii (B),
and when keeping them fixed (C), and the estimate obtained with the STVQ
algorithm (D). The size of the lattices is 24 x24 neurons. Abbreviation: pd =
probability density.

(E,F) Hill-climbing procedure applied in lattice space on the density estimate
shown in (B). We first determine the density estimates at the neurons’ weight
vectors, since hill-climbing is performed on them. For each neuron ¢, we look
for the neuron with the highest density estimate among itself and its k-nearest
lattice neighbors. When this is neuron : itself, it is called a “top” neuron,
since it represents a local density maximum; when it is another neuron j, then
the procedure is repeated for neuron j, and we say that neuron z “points” to
neuron j. All neurons that eventually point to the same “top” neuron, receive
the same cluster label. The result is represented as a cluster map (E). In order
to motivate the choice of the parameter &£ in the hill-climbing procedure, the
number of clusters found as a function of k is plotted (F). The long plateau
indicates that there are 4 clusters. The cluster map corresponding to k£ = 100

is shown in (E).

18

Table caption

Table 1: Density estimation performance, expressed in Mean Squared Error
(MSE), in the case of the product distribution example shown in Fig. 3A, when
using our learning algorithm (LDE), and two of its modified versions, and four
other kernel-based topographic map formation algorithms. The parameters

used in these algorithms are also listed. See text.

A
DN

S
N
XN

i

Figure 1:

N

19

V1 Y ¥

V.

Figure 2:

2M

20

24

10 o+

number of clusters

0 | | | | |
0 50 100 150 200 250

number of neurons (k)

Figure 3:

21

Table 1:

algorithm parameters MSE

LDE Do = 0.01, 7, = 0.17,, 6.23 x 102
LDE (min Eucl) nw = 0.01, n, = 0.1n,, 6.77 x 1072
LDE (fixed radii) Ny = 0.01 9.78 x 1072
KMER oy =1, ps =2, 7 = 0.001 6.71 x 102
Yin & Allinson n = 0.01 7.16 x 1072
STVQ % =0.01, op = 0.5, oopt = 0.0905 | 7.48 x 1072
SSOM % =0.01, op = 0.5, oope = 0.0925 | 7.28 x 1072
SOM n = 0.015, oope = 0.15 1.21 x 1071

22

