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Abstract.
A novel approach for testing the presence of Granger causality

between two time series is proposed. The residue of the destina-
tion signal after self-prediction is computed, after which a cross-
prediction of the source signal over this residue is examined. In
the absence of causality, there should be no cross-predictive power,
due to which the performance of the cross-prediction system can
be used as an indication of causality. The proposed approach uses
the surrogate data method, and implements the self- and cross-
prediction systems as feedforward neural networks. It is tested
on synthetic examples, and a sensitivity analysis demonstrates the
robustness of the approach.

INTRODUCTION

The operational definition of Granger causality [3] is based on a comparison
between the predictive ability of a restricted and an unrestricted prediction
model: x “Granger causes” y if x aids in the prediction of y. There exist
several tests that compare between predictive models of y based on 1) past
values of y only (restricted model, ‘self-prediction’), and 2) the combina-
tion of past values of y and past values of x (‘lagged’ unrestricted model,
‘cross-prediction’, see [1, 2]). Alternative versions of these tests examine the
‘instantaneous ’ Granger causality, which include the present value of x in the
unrestricted model.

We propose a slightly different approach for testing the presence of lagged
and instantaneous Granger causality: x Granger causes y if past values of
x (and in the case of instantaneous causality, also the present values) have
predictive power over the residual signal of y after self-prediction. Both the
self- and cross-predictions are implemented as feedforward neural networks,



and a bootstrapping approach (surrogate data method) is adopted for the
subsequent testing of the predictive ability of the cross-prediction.

METHODS

The proposed approach for testing the presence of x → y lagged Granger
causality is outlined in Fig. 1. It consists of two stages, namely the self-

prediction (upper part) and the cross-prediction system (lower part). In the
case of a test for instantaneous Granger causality, xk should be included as
input to the cross-prediction system. After explaining the two stages, the
hypothesis testing and the generation of the surrogate data are described in
this section.

Self-Prediction

The self-prediction system is implemented as a feedforward neural network
with a single hidden layer of three neurons. It is configured such that it maps
‘delay vectors’ (DVs) [yk−1, . . . , yk−m] onto the current sample or ‘target’,
yk, where m is the input dimensionality. The network is trained in batch
mode, using the SuperSAB adaptive learning rate scheme [6], starting at
η = 0.001. Convergence is monitored by means of the variance of the residual
signal after self-prediction,

〈

r2
〉

=
〈

(y − ŷ)2
〉

, where ŷ is the network output
and y the desired output. As will be explained in the Discussion Section,
the implementation of a cross-validation strategy to prevent overfitting is
not necessary in the current framework. After convergence, the network is
further trained for 100 iterations using a fixed learning rate of η = 0.001.
Unless otherwise stated, the input dimensionality is set to m = 4.

Cross-Prediction

The residual signal after self-prediction, r = y− ŷ, is now used as the desired
output of a neural network with the input consisting of DVs [xk−1, . . . , xk−m]
in the lagged case, and of DVs [xk, . . . , xk−m] in the instantaneous case. The
network is trained in the same fashion as the self-prediction system, and the
variance σ2

o of the residual signal, o = r − r̂, is computed. In the absence of
(lagged or instantaneous) x → y causality, this residual variance, σ2

o , should
be equal to that of the residual signal after self-prediction, σ2

r , and it should
be smaller otherwise. In the following, a method is proposed for statistically
testing this (in)equality.

Hypothesis Testing

To compare the variances of o and r in a reliable manner, the comparison
should be performed in a statistical sense. However, since the analytical form
of the distribution of σ2

o under the assumption of the null hypothesis, H0,
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Figure 1: Proposed approach for testing the presence of lagged x → y Granger
causality. Dashed lines represent desired outputs to the networks. When testing
the instantaneous x → y Granger causality, xk should be included as input to the
cross-prediction system.

namely the absence of x → y Granger causality, is not known, we adopt
a bootstrapping procedure for generating an empirical distribution function
(EDF) of σ2

o , given H0. To this cause, the surrogate data methodology [4, 5]
is commonly used in the field of signal nonlinearity testing. In the absence of
x → y Granger causality, a randomisation of x, such as a random permuta-
tion of the time samples which retains the signal distribution but makes the
signal random otherwise, should not have an effect on the cross-prediction
performance. Therefore, if we generate Ns such random permutations, or
so-called ‘surrogates’, and retrain the cross-prediction network for each of
these, a set of residual variances, {σ2

s,i}, is obtained1, forming an EDF under
the assumption of H0. The null hypothesis can be subsequently tested at the
significance level α using a non-parametric rank-based test, as suggested in
Ref. [5], namely by sorting {σ2

o , σ
2
s,1, . . . , σ

2
s,Ns

} in increasing order and ob-

serving the rank of σ2
o . If this rank ro ≤ α (Ns + 1), the null hypothesis of

the absence of x → y Granger causality is rejected.

Iterative Amplitude Adjusted Correlation (iAAC) Surrogates

The rejection of a null hypothesis in a surrogate data framework needs to
be interpreted with due caution, as discussed, e.g., in Ref. [4], since there
is no information available regarding what aspect of the null hypothesis is
violated. In our particular case of instantaneous x → y causality, it is well
possible that the time series x shows a high degree of correlation to y and r

without instantaneously Granger causing y. The random permutations of x

lose this correlation, possibly resulting in a rejection of the null hypothesis,

1The subscripts σ
2
o and {σ2

s,i} refer to ‘original’ and i–th ‘surrogate’.



and, thus, falsely indicating x → y Granger causality. In order to compensate
for such occurrences, a different type of surrogate is proposed, which retains
the signal distribution and the correlation to the residual signal r, but is
random otherwise.

The proposed method for generating surrogate data, the ‘iterative Ampli-
tude Adjusted Correlation’ (iAAC) method, is related to the iterative Ampli-
tude Adjusted Fourier Transform (iAAFT) method [4]. In both methods, the
signal distribution of the original time series, x, is retained (“Amplitude Ad-
justed”), but the proposed method retains the (statistical) correlation (“C”)
to a reference time series, xref , rather than the amplitude spectrum (“FT” for
Fourier Transform) in the iAAFT case. The objective of the iAAC method
is to generate a surrogate, xs, which displays the same correlation to xref as
the original data, x. For convenience, a time series is represented as a vector
of time values with unit norm and zero mean (X, rather than x), due to
which the correlation to xref is retained by imposing that the dot product
C = (XT

refX) equals (XT
refXs). Note that C can take on any value in [−1, 1],

but is set specifically to (XT
ref

X) in the present application. Furthermore,
(XT

refXs) is only equal to the statistical correlation between Xref and Xs if
both have unit norm. The following energy function is used:

E =
1

2
(C −XT

refXs)
2. (1)

Differentiating to Xs yields the gradient descent update rule at iteration i:

Xi+1
s = Xi

s + η Xref

(

C −XT
refX

i
s

)

. (2)

In our case, where the number of parameters equals the number of time
samples and there is only a single ‘desired output’, namely C, this update
rule converges after one iteration for a learning rate of η = 1. One additional
constraint for the dot product to be proportional to the statistical correlation
is that the norm ‖Xs‖ = 1, which could either be included in the energy
function (Eq. 1) or as a normalising step following each parameter update.
However, the vector Xs will have a unit norm as a result of the subsequent
“Amplitude Adjusting” step, which renders the signal distributions (and,
thus, also the norms) of the original, X, and the surrogate, Xs, identical. We
use the rank-ordering procedure described in Ref. [4], which sorts the signal
values of X and of Xs in increasing order, and sets the values of Xs equal to
those of X with corresponding ranks.

The proposed iAAC method consists of iterating Eq. 2 and the rank-
ordering procedure consecutively until E converges, which typically occurs
after fewer than 20 iterations. Fig. 2 shows an example in which an iAAC-
surrogate is generated with a signal distribution identical to that of a segment
of the chaotic laser data from the Santa Fe Competition (x, Fig. 2A; [7]), and
a correlation of C = 0.5 to the x coordinate of a 1000 time sample realisa-
tion of the Lorenz system (xref , Fig. 2B). The energy function (Eq. 1) during
the iterative procedure is plotted in Fig. 2C, showing clear convergence. In
our implementation, the iterative procedure is stopped when the decrease in



energy is smaller than 10−10, which in the example case would be after 7
iterations. The obtained surrogate, Xs, displays the desired dot product to
Xref and has a signal distribution approximately identical to that of the orig-
inal time series, x. The initial configuration of Xs is a random permutation
of X

‖X‖ , and after convergence, Xs is scaled by the norm of the original X.

Figure 2D and 2E show the obtained iAAC surrogates, with a desired dot
product of C = 0.5, retaining the signal distribution of the Laser series and
of the Lorenz series, respectively (thus, exchanging x and xref).

SIMULATIONS

The proposed method for testing Granger causality is applied to a number
of synthetic benchmark signal pairs (x, y). Both types of surrogates, namely
those generated as random permutations and using the proposed iAAC, are
evaluated, in the case of lagged and instantaneous Granger causality. The
following signals are used, a number of which have been taken from Ref. [2].

BC (x, y) forms a bivariate normal distribution with a correlation of 0.8
between dimensions

BCT identical to BC, but y is shifted forward in time by one time unit

AR1 time series generated by the model:

xk = 0.6 xk−1 + 0.5 yk−1 + ν1

yk = 0.6 yk−1 + ν2,

where ν1 and ν2 are N (0, 1) Gaussian white noise sources

AR2 time series generated by the model:

xk = 0.5 xk−1 + 0.4 yk−1 + ν1

yk = 0.5yk−1 + 0.4 xk−1 + ν2,

where ν1 and ν2 are N (0, 1) Gaussian white noise sources

AR3 x and y consist of coloured noise, generated by the stable AR(4) model:
sk = 1.79 sk−1 − 1.85 sk−2 + 1.27 sk−3 − 0.41 sk−4 + ν

AR4 coloured noise sources identical to AR3, but (xk := xk + 0.3 yk−1)

NAR1 coloured noise sources of AR3, but (xk := xk + 0.05 (yk−2 + yk−1)
3)

NAR2 starting from (x, y) a bivariate normal distribution with zero mean
and unit variance, xk := xk + 0.2 (xk−1 − yk)3

Unidirectional Granger causality y → x is present in BCT, AR1, AR4, NAR1
and NAR2, and bidirectional x ↔ y in AR2. For each of the eight processes,
100 realisations are generated consisting of N = 1000 time samples.

The results are summarised in Table 1 as the number of rejections of the
null hypothesis of non-causality (thus, the number of time series for which
x → y Granger causality is detected) at a significance level of α = 0.05,



Table 1: Number of detections of x → y, respectively y → x Granger
causality in the benchmark sets, each containing 100 × 2 time series, at
the significance level of α = 0.05. Results are given for the lagged
and instantaneous Granger causality, and for the two types of sur-
rogates. The results illustrating the erroneous rejections using the
random perm surrogates (see Simulations Section) are underlined.

lagged instantaneous
iAAC random perm iAAC random perm

x → y y → x x → y y → x x → y y → x x → y y → x

BC 7 7 4 4 3 8 100 100
BCT 3 100 3 100 3 100 1 100
AR1 1 100 1 100 4 100 2 100
AR2 100 100 100 100 100 100 100 100
AR3 4 6 4 5 9 9 23 15
AR4 1 100 1 100 3 95 4 100

NAR1 4 100 4 100 2 81 6 100
NAR2 7 99 3 97 0 99 100 100

for lagged and instantaneous Granger causality, and for both types of sur-
rogates. For each pair of benchmark signals, the time series x and y are
interchanged, and the test is repeated, thus, testing y → x. Lagged Granger
causality, using both the iAAC and the random permutations surrogates, is
correctly judged absent in time series BC, and AR3, unidirectionally present
in BCT, AR1, AR4, NAR1 and NAR2, and bidirectionally in AR2. The
number of erroneous rejections is slightly above the expected 5% for the BC
and NAR2 sets. The BC and NAR2 results for the instantaneous Granger
causality (underlined in Table 1) illustrate the false detections using the ran-
dom permutations surrogates: the instantaneous correlation between x and
y is not retained in the random permutations surrogates, and thus leads to a
rejection of the null hypothesis, which is not the case when using the iAAC
surrogates. Furthermore, the random surrogates yield a high number of er-
roneous detections for the AR3 set. In contrast to the lagged cases, there are
no false detections of x → y Granger causality in the NAR2 set using the
iAAC surrogates. Overall, however, the number of erroneous rejections tend
to be slightly higher for the instantaneous iAAFT Granger causality tests,
and the number of correct rejections is lower.

Sensitivity Analysis

In this section, the sensitivity of the proposed method to parameter settings
is examined. In particular, the number of data points, N , the number of
hidden neurons, nh, and the number of input taps, m, are varied separately,
keeping the other parameters at the default values described earlier (N =
1000, nh = 3, and m = 4). For a given parameter setting, 100 realisations
of the NAR1 time series are analysed for lagged x → y and y → x Granger
causality using the iAAC surrogates, and for both cases, the following metric



is evaluated:

d =
σ2

o − mean(σ2
s,i)

std(σ2
s,i)

, (3)

where mean(·) and std(·) denote the mean and standard deviation over the
Ns possible surrogates xs,i. The measure d can be interpreted as the number
of standard deviations σ2

o deviates from the mean. It is expected that this
metric is close to zero for the x → y case, and negative for the y → x

case. Note that σ2
s,i does not follow a normal distribution, and that, hence,

d should only be used as a rough estimate of significance, and not as an
absolute measure as such. For convenience, however, the relative measure d

will be simply referred to as the ‘significance’.
Figures 3A and 3B show the effects of respectively the number of avail-

able data points, N , and the number of hidden neurons, nh. It is clear that
increasing the number of data points, N , and the number of hidden neurons,
nh, improves the significance with which the null hypothesis is correctly re-
jected for the y → x case. Varying these parameters does not induce an
increased risk of erroneous rejections, as can be seen by the results for the
x → y case (dashed curves), namely that d stays close to zero for all param-
eter values of N and nh. The effect of the number of input taps, m, is shown
in Fig. 3C. It can be observed clearly that the results are only reliable for
m ≥ 4, since the measure d for the x → y case is too negative otherwise,
which is an indication of a high false rejection rate. The minimal value of m

which is required for reliable detection of causality is related to the optimal
filter size in digital signal processing: if m is too small, the signal variation
within the input tap delay line is mostly governed by noise, and m should
be increased. On the other hand, an increasing number of input taps lowers

the significance with which the null hypothesis is rejected for the y → x case
(d increases as a function of m). This can be attributed to the increasing
sparseness of the m-dimensional input data, due to which more data would
be required to maintain the level of significance observed for a lower number
of input taps (curse of dimensionality). In the current example, the signals
are generated from an AR(4)-process, and thus, the optimal order is m = 4.

CONCLUSIONS

We have proposed a novel method for testing the presence of causality be-
tween two time series, based upon an interpretation of the x → y Granger
causality concept, which is slightly different from the original one [3]. Rather
than checking whether the inclusion of a time series x aids in the (cross-) pre-
diction of y, compared to the self-prediction of y as such, it is tested whether
x is able to (cross-) predict the residual signal of y after self-prediction. Both
predictions (self- and cross-) are implemented as traditional feedforward neu-
ral networks, trained using backpropagation with the SuperSAB adaptive
learning rate scheme [6]. Two variants of causality were considered, namely
the ‘lagged’ causality, where only the past values of x are used for the cross-



prediction, and the ‘instantaneous’ causality, where the past and present
values of x are used.

In theory, in the absence of x → y Granger causality, x should not
have predictive power with respect to the residual of y after self-prediction,
r = y − ŷ, and the variance of the residual signal after cross-prediction, σ2

o

should be equal to that of r. In practice, however, σ2
o will become gradually

smaller when the number of parameters in the neural network is increased
due to overfitting. One possible remedy would be cross-validation, thus re-
taining a portion of the data for validation purposes. We have opted for a
different approach in which the complete data set can be used for training,
namely that of bootstrapping an empirical distribution function (EDF) of
the predictive power, measured by σ2

o , under the assumption of the absence
of Granger causality (null hypothesis). If the actual predictive power is sta-
tistically different from that expected from this EDF, the null hypothesis is
rejected and x → y Granger causality is present. The EDF is constructed by
generating ‘surrogates’ of x, either as a random permutation of the time sam-
ples or using the proposed iterative Amplitude Adjusted Correlation (iAAC)
method, and for each surrogate, xs, a neural network is trained to predict
r from xs, and the residual variance is taken as an inverse measure of the
predictive power. Furthermore, since both types of surrogates retain the sig-
nal distribution of the original time series, effects of possible non-Gaussianity
of x are incorporated in the null hypothesis under which the surrogates are
generated, and will not influence the test results.

A sensitivity analysis demonstrated the positive effect of the number of
available data points, N . The number of hidden neurons, nh, and the number
of tap inputs, m, were shown to have different effects on the significance with
which a null hypothesis was correctly rejected. Increasing nh increased the
rejection significance up to a certain point, after which it remained stable. On
the other hand, increasing m initially increased the significance, but decreased
it for values of m exceeding a certain value related to the optimal filter size.
This could be attributed to the fact that m influenced not only the number
of parameters in the prediction networks, but also the dimensionality of the
input, which, in turn, could have an effect on training performance, namely
when increasing m no longer provides additional information, it only renders
the data more sparsely distributed (curse of dimensionality). Therefore, the
appropriate choice of m is more crucial than that of nh. It is furthermore
expected that a different number of input taps for the self- and the cross-
prediction systems could improve the results. The stability with respect to
the variation of the number of neurons in the hidden layer is also an indication
that the surrogate data methodology compensates for possible overfitting.
Indeed, these effects occur both for the original and for the surrogates, due
to which no cross-validation strategy needs to be employed, and the size of
the neural network is less critical than in traditional applications.

A comparative study was performed on a number of data sets, using dif-
ferent types of surrogates, namely random permutations of the time series
and surrogates generated using the proposed iterative Amplitude Adjusted



Correlation (iAAC) method. The first retains only the signal distribution of
the original time series, x, whereas the latter type also retains the (instan-
taneous) correlation between the predictor x and the residual signal after
self-prediction r. Furthermore, the effect of including the present time sam-
ple of the predictor, x, yielding a test for ‘instantaneous’, rather than ‘lagged’
Granger causality. The results indicated that a test for ‘lagged’ causality is to
be preferred if applicable, namely if the actual causal relationship is a lagged
one. However, if this is not the case (which, in typical applications is not
known a priori), the test for instantaneous causality should improve the test
results. Furthermore, it was found that the iAAC method for generating the
surrogates yielded a clear improvement over the random permutations when
testing for instantaneous causality.
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Figure 2: A,B) Laser and Lorenz time series; C) Energy during the iterative iAAC
procedure. D) iAAC surrogate with signal distribution identical to that of the Laser
time series and correlated to the Lorenz time series; E) iAAC surrogate with signal
distribution identical to that of the Lorenz time series and correlated to the Laser
time series.

A B C

Figure 3: Sensitivity analysis of the proposed method with respect to A) the number
of available data points, N , B) the number of hidden neurons, nh, and C) the
number of tap inputs, m. The median of the metric d is plotted for the x → y

(dashed) and y → x (solid) Granger causality test applied to the NAR1 data set.
For reference, the dotted line represents the (d = −2)–level. The error bars denote
the upper and lower quartiles computed over the batch of 100 realisations of the
NAR1 data set.


