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Abstract.

We apply the principle of causal networks to develop a new tool
for connectivity analysis in functional Magnetic Resonance Imaging
(fMRI). The connections between active brain regions are modelled
as causal relationships in a causal network. The causal networks are
based on the notion of d-separation in a graph-theoretic context or,
equivalently, on the notion of conditional independence in a statistical
context. Since relationships between brain regions are believed to
be non-linear in nature [1], we express the conditional dependencies
between the brain regions’ activities in terms of conditional mutual
information. The density estimates needed for computing the con-
ditional mutual information are obtained with topographic maps,
trained with the kernel-based Maximum Entropy Rule (kMER).

INTRODUCTION

Network modelling techniques have been used in a variety of application do-
mains. In functional neuroimaging, network modelling has been used for
modelling connections between active brain regions. Functional network
modelling, as it is called, has first been applied to Positron Emission Tomog-
raphy (PET) by Mclntosh and co-workers [2, 3|, and later also to functional
Magnetic Resonance Imaging (fMRI)! [4]. The technique used in both cases is

LFMRI is a non-invasive technique for measuring metabolic-related brain activity given
a certain task or sequence of tasks.



Structural Equation Modelling (SEM). In SEM, a linear system of equations
is used to describe the interactions between the nodes of a network model,
and the free parameters are optimised in such a manner that the covariance
pattern of the recorded signals is sufficiently closely modelled [5]. Alternatives
to SEM have been introduced in fMRI by Biichel and Friston: in one case,
the relationships are obtained with a regression technique (Kalman filtering
and a fixed smoothing process) [6], and in another case, with a higher-order
convolution technique (using Volterra kernels) [1] (for an overview, see [7]).
Here, we will introduce a still different and new approach to functional net-
work modelling in neuroimaging. The technique relies on the principle of
causal networks which are instantiations of a Directed Acyclic Graph (DAG)
[8]. The causal network is then adopted as our functional network model.
The advantage of this technique is that it allows for non-linear connections
in the functional network model.

The DAGs were originally conceived for discrete variables, and have led to
the well-known Bayesian networks [9]. The main principle behind them is a
test for conditional independence between the network nodes’ activities. The
correspondence between graphical causal models (here, DAGs) and linear
causal models, for continuous variables, (e.g., Structural Equations Models,
SEM [5]) is investigated in [10]. However, by applying a non-linear condi-
tional independence test, we can go beyond the linearity restriction of SEM,
and discover causal non-linear relationships.

The article is organised as follows. First, we introduce DAGs and review
the conditions required for a causal interpretation of a DAG. We then describe
the basic algorithm for obtaining the causal DAG, called SGS-algorithm, after
their inventors Spirtes, Glymour and Scheines. In the next section, we briefly
describe the conditional dependencies between the brain regions’ activities in
terms of conditional mutual information. The density estimates needed for
computing the latter are determined with kernel-based topographic maps,
trained with the kernel-based Maximum Entropy Rule (kMER) [11, 12].
Next, we apply our network modelling to a human fMRI data set [13] ob-
tained in a block design heading study, and discuss the causal non-linear
relationships between the obtained brain regions. Finally, we summarise our
results and indicate some open ends which require further research.

CAUSAL NETWORKS

DAG. We will consider a functional network model of fMRI activations as
an instantiation of a DAG [8]. We first need a number of definitions. A graph
consists of nodes joined by edges. A DAG is then defined as a set of nodes?
X and a set of directed edges E, in such a way that the DAG is loopfree. To

2We denote sets of variables by boldface capital letters X, Y, Z and individual variables
by capital letters such as X,Y, Z.



each node of a DAG corresponds a variable, i.c., the recorded fMRI signal.
When a directed edge exists from nodes X to Y, then X is a parent of Y
and Y is a child of X. A descendant of node X is any node Y for which a
directed path exists from X to Y.

A

Figure 1: Causal Markov Condition for a simple network. See text for explication.

Causal Markov Condition. The DAG G represents the conditional inde-
pendence properties of the probability distribution of its nodes P(X). For
random vectors X, Y and Z, X and Y are conditionally independent given Z,
denoted as X L Y | Z,if X and Y are independent after removing the effects
caused by Z. The Causal Markov Condition (CMC) lists the independence
relationships that are specified by the graph. For example, consider Fig. 1.
The CMC states that variable X is independent of its grandparents A and B,
given its parent W: we can say that A and X are blocked by W and B and X
are blocked by W. Indeed, once one knows the value of W, one can predict
the value of X using W. In the literature on causality, it is said that {A, B}
and X are d-separated by W. The notion of d-separation is a graph theoretic
criterion for detecting conditional independencies. More generally, the CMC
states that each variable is independent of its grandparents, given its parent
variables (for more information, see [9]). Formally, for a given graph G and
node X, let Parents (X) be the set of parents of X, and Descendants (X)
the set of descendants of X, then the DAG G over a set X and a probability
distribution P(X) satisfies the CMC if and only if for every W in X:

X 1 X\(Descendants(X) U Parents(X)) | Parents(X)

Causal Faithfulness Condition. Conclusions about the structure of the
DAG of an observed sample (i.c., an fMRI data set) can only be reached
if a second assumption is adopted in the analysis: in general, a probability
distribution P on a graph G satisfying the CMC may include other indepen-
dence relations besides those entailed by the CMC. One such assumption is
the Causal Faithfulness Condition (CFC) specifying the dependence relation-
ships in the graph, stating that variables are independent only when their
independence is implied by the CMC. Both CMC and CFC connect proba-
bility with causality and allow for a causal interpretation of the network.



SGS-algorithm. The SGS-algorithm is one of the basic algorithms for ob-
taining a causal DAG from a data set. The algorithm, as well as its correct-
ness proof with respect to the CMC and CFC, are described in [14, 15]. The
algorithm assumes causal sufficiency, which means that there are measure-
ments available for each node (i.e., no hidden variables). Since, in the field of
functional neuroimaging, one is interested in a connectivity analysis given the
recorded activations, this algorithm suffices for our purposes. The original
SGS-algorithm is formulated using the notion of d-separation [14]. However,
as was done in [15], since in the discovery phase of a DAG, d-separation of
nodes is determined by conditional independence, we will write “conditional
independence” instead of “d-separation between X and Y.

Algorithm
A) Compose the complete undirected graph G for the set of variables X.
B) For each pair of nodes X and Y, if there exists a subset S of X\{X,Y}
such that X L Y | S, remove the edge between X and Y from G.

C) Let K be the undirected graph resulting from step B). For each triple of
nodes X, Y, and Z such that X and Y are linked and also Y and Z (written
as X —Y — Z), but the pair X and Z is not, add directions to the edges of
X —Y — 7 as follows: X — Y « Z, if and only if there is no subset S of
X\{X, Z}, but which contains Y, such that X L Z | S.
D) In the partially directed graph resulting from step C), add as many direc-
tions to the remaining undirected edges as possible subject to two conditions:
(i) the added direction should not create a new v-structure, i.e., two converg-
ing arrows whose tails are not connected by an arrow, e.g., X — Y «— Z|
and (ii) the added direction should not create a directed cycle.

Step D) of the algorithm can be implemented in several ways. We refer to
[16] where four simple rules are described to implement this step and which
were also used in our simulations.

CONDITIONAL INDEPENDENCE

Mutual Information. As a measure of statistical independence between
two variables X and Y, we use mutual information MI(X,Y"). Indeed, MI can
be considered as a generalised correlation coefficient, generalised with respect
to the nature of the relationship between the variables, thus not only linear
relationships, as in the usual correlation coefficient, ». Mutual information
can be defined in terms of differential entropy. Let X be a random vector
with density p(X), the differential entropy is defined as:

HX) =~ | p(X)loga(p(X))dX.
X
The mutual information between two variables X and Y of X is then:

MI(X,Y) = H(X) + H(Y) — H(X,Y). (1)



Topographic maps and density estimation. To estimate the marginal
and joint densities of Eq. (1), we use the kernel-based Maximum Entropy Rule
(kMER) which develops a topographic map for which each neuron i possesses
a radially-symmetric Gaussian kernel in the data space, centered at w; and
with radius ;. A neuron is only activated when it falls in the hypersphere
with center w; and radius ¢;. The learning rule updates the weights and the
radii so that a topology-preserving map is developed in which all neurons
have the same activation probabilities. These kernels can then be used for
density estimation [12]:

N exp ( _ Hv—wm)
Po(V) = 5 Y e ©)
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in which N denotes the number of kernels, and ps; a common factor which
controls the smoothness of the resulting density estimate. We obtain an
optimal value for the parameter ps by maximum likelihood estimation, i.e.,
by adjusting ps so that the data has maximum probability to have been
drawn from the true input density. This is obtained by using the following
formula with M denoting the number of data points.

M
ps = argmi ( - Zlog (pp. (vj)))-

Conditional density estimation. We need to estimate the dx-dimensional
joint conditional density of a set of dx variables X = { X1, Xo, ..., X4y }, given
another set of dc-dimensional variables C which are fixed at a particular
vector of values v. We first put a dc-dimensional kernel at position v and
with width oc, and evaluate the NV density kernels located at positions w;,
Vi, by only taking into account the components of w; which are directed
along the do dimensions defined by C. This is denoted by w?. In this way,
we obtain a weighted contribution for each density kernel. We then introduce
these weights into the density estimate as described in Eq. (2). This leads to
the following definition of conditional density estimation:
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The conditional entropy of X given C, i.e., H(X | C), is defined as the ex-
pected value of H(X | C = ) over all different v's. This expected value can



be approximated as a sample mean:

M

1
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Analogous to our definition of conditional entropy as an average over C, we
also define the conditional mutual information between two variables X and
Y, given a set of variables C, i.e., MI(X,Y | C), as an average over C:

M
1
MI(X,Y |C) =~ MZMI(X,Y |C=7,)
j=1

MI(X,Y |C=n;) = H(X|C=r;)+H({Y |C=1;)-HX,Y|C=n)

As stated above, we use conditional mutual information to decide about
the presence of conditional independence relations, and hence, the presence
of a link in the functional network (thus, purely the topology). However, as
opposed to the usual correlation coefficient, r, mutual information does not
take values between -1 and 1. We propose a normalisation of the MI result
between 0 and 1 by observing that the differential entropy H(X) is an upper
bound for MI(X,Y), and 0 the lower bound:

MI(X,Y)

Mbnorm (X:Y) = 2075 Ty

If X and Y are independent, then MI(X,Y") = 0 and also M1, (X, Y) = 0.
If X and Y are maximally dependent, i.e., when X=Y, then MI(X,Y") can
be written as MI(X, X) which is equal to H(X) and, hence, ML,y (X,Y)
becomes equal to 1. Evidently, this normalisation can also be used for eval-
uating the conditional mutual information:

MI(X,Y | C)
(X ]C)+H(Y | C)

MIorm X7Y C)=2
(XY 0 =2

EXPERIMENT

In order to demonstrate our new network modelling approach, we consider
the human fMRI data set described in [13], namely, a block design heading
study. Human subjects had to judge the heading of a ground plane optic flow
pattern. From the observed fMRI activations, and the anatomical evidence,
Peuskens and co-workers hypothesise that the network specifically involved in
heading consists of two motion sensitive areas: human MT/V5+, including an



inferior satellite, and dorsal intraparietal sulcus area (DIPSM/L), predom-
inantly in the right hemisphere, plus a dorsal premotor region bilaterally.
However, they did not apply a network modelling technique.

We will now use the experimental design referenced in [13] as fMRI3 for
network modelling. In this fMRI experiment, five tasks were considered: one
fixation task, which is used as a reference, two heading tasks, and two dim-
ming tasks, which did not contain any heading information (control tasks).
The difference in brain activations between the heading and the control tasks
should only be due to the heading component in the stimulus.

For the sake of simplicity, we use data from a single subject only. The raw
fMRI time series are corrected for head movement and are realigned to the
Talairach-Tournoux space, using SPM99 (Wellcome Department of Cognitive
Neurology, London), a well-known package for fMRI analyses. Furthermore,
we restrict our network modelling to the fMRI time series, the coordinates
of which are listed in Table 3 in [13] and that are part of the right brain
hemisphere. The original fMRI time series are linearly detrended to remove
any drift caused by the fMRI scanner, and uniformly scaled to fit the [0, 1]
interval, followed by a zero-mean centering. Higher-order detrending is not
performed, since it could hamper the detection of paradigm-related patterns.
The fMRI time series are shown in Fig. 2.
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Figure 2: fMRI signals that are actively involved in the heading task. The eight
fMRI signals shown, are the ones mentioned in Table 3 in Peuskens et al., and
pre-processed as discussed in the text. The horizontal axis represents time, while
the vertical one represents the signal’s amplitude.

We now apply our causal network modelling tool. The density estimation
is performed with a 4 x4 topographic map. When determining the conditional
independence relations, we take M I, orm(X,Y | C) = 0.05. The resulting
network is shown in Fig. 3. When considering a 3 x 3 topographic map,
only a few links are detected and a relatively large number of nodes are not
connected to any other node. This is due to the fact that the map is too
small to capture the probability distribution function accurately and, hence,
it cannot be used for reliable conditional independence tests. The results for
4 x 4 and 5 x 5 topographic maps are similar, indicating that the density
estimate for the 4 x 4 case is accurate enough for the current data set.
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Figure 3: Network as found by applying the SGS algorithm to the fMRI signals.

DISCUSSION

The nodes in Fig. 3 represents the brain areas that are assumed to be re-
sponsible for the judgement of heading. This result corresponds rather well
to what is known about this part of the cortex, as well as the hypothesis
formulated by Peuskens and co-workers [13].

First, we briefly discuss the name and function of the brain areas indicated
in Fig. 3. Two nodes labelled with BA 7 represent the dorsal intraparietal
sulcus, medial and lateral (DIPSM/L), which is considered to be important in
the integration of sensory inputs with the decision-making apparatus, includ-
ing the focusing of attention and the initiation of purposeful body movements
[17]. The node labelled with BA 39 represents an area that is slightly ante-
rior (i.e., towards the forehead) to the middle temporal area (hWMT/V5+).
Areas BA 37 and BA 19, and to a lesser extent also BA 39, all belong to
hMT/V54, which is part of the cortical visual system. Finally, BA 6 is the
premotor area which is responsible for more complex body movements [17].

We now discuss the plausibility of the network connections shown in
Fig. 3. The network indicates that, prior to a body movement (BA 6), input
is received from the visual system (BAs 39 and 19) and from BA 7, which
integrates sensory and decision-making information. The functionality of the
latter also explains why arrows, e.g., originating from BA 6, are pointing to
it, since, when one is actually performing a body movement, feedback will
have to be received by BA 7. Note that BA 37 seems to have no interaction
at all with the other brain areas, and that BA 6 even projects directly to BA
19, however, we note that there is not much known about this connection
(Peuskens & Orban, personal communications).



CONCLUSION AND FUTURE RESEARCH

As demonstrated, our network modelling approach offers a quantitative way
for studying cortical networks. However, to validate our approach, we should
consider more cases for which the obtained networks can be compared with
the known anatomy. Finally, concerning the tool itself, although we have only
considered directed acyclic graphs, the assumptions for causal discovery can
also be investigated with directed cyclic graphs (DCG) [18, 19]. We intend to
incorporate conditional mutual information tests in DCGs, and apply DCGs
to fMRI data in order to model recurrent connections between brain regions.
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