KERNEL-BASED TOPOGRAPHIC MAP
FORMATION ACHIEVED WITH NORMALIZED
GAUSSIAN COMPETITION

Marc M. Van Hulle
K.U.Leuven, Laboratorium voor Neuro- en Psychofysiologie
Campus Gasthuisberg, Herestraat, B-3000 Leuven, BELGIUM
Tel.: + 32 16 34 59 61, Fax: + 32 16 34 59 93

E-mail: marc@neuro.kuleuven.ac.be

Abstract.

A new learning algorithm for kernel-based topographic map for-
mation is introduced. The kernels are Gaussians, and their centers
and ranges individually adapted so as to yield an equiprobabilis-
tic topographic map. The converged map also generates a het-
eroscedastic Gaussian mixture model of the input density. This is
verified for both synthetic and real-world examples, and compared
with other algorithms for kernel-based topographic map formation.

INTRODUCTION

Kernel-based methods have enjoyed a great deal of attention in the neural
network community and are now considered as viable alternatives for super-
vised learning in tasks such as regression and classification. However, what is
less known is that kernels have also been introduced in unsupervised compet-
itive learning, more in particular, in topographic map formation, mostly in
an attempt to improve the density estimation properties, the noise tolerance,
or even the biological relevance of the popular Self-Organizing Map (SOM)
algorithm [1, 2]. The neurons of the topographic map are equipped with local
kernel functions (Fig. 1), rather than Winner-Take-All (WTA) functions. We
further call such lattices kernel-based topographic maps.

Several algorithms for kernel-based topographic map formation are de-
scribed in the literature (for an overview, see [3]). An early example is the
elastic net of Durbin and Willshaw [4], which can be viewed as an equal-
variance Gaussian mixture density model, fitted to the data points by a
penalized maximum likelthood term. In recent years, algorithms have been
introduced by Bishop and co-workers [5] (Generative Topographic Map, based
on constrained, equal-variance Gaussian mixture density modeling with equal
mixings), Utsugi [6] (also using equal mixings of equal-variance Gaussians),
Van Hulle [7, 8] (kernel-based Maximum Entropy learning Rule (kMER),

Figure 1: Kernel-based topographic maps. Example of a 2 x 2 map (cf. rectangle
in V-space) for which each neuron has a Gaussian kernel as activation- or output
function. For each neuron, a circle is drawn in V-space with center the neuron
weight vector and radius the kernel range.

which builds equiprobabilistic maps using equal mixtures of Gaussians with
differing variances). Furthermore, we should also mention the fuzzy member-
ship in clusters approach of Graepel and co-workers (The Soft Topographic
Vector Quantization (STVQ) algorithm) [9] which relies on equal-variance
Gaussians. Other approaches are offered by the Local Density Estimation
(LDE) algorithm [10], which individually adapts the centers and radii of the
Gaussian kernels to the assumed Gaussian local input density, and the joint
entropy maximization algorithm [3], which adapts the centers and radii so
as to maximize the joint entropy of the kernel outputs. Finally, the original
SOM algorithm itself has been regarded as an approximate way to perform
equivariance Gaussian mixture density modeling by Yin and Allinson [11],
among others (see [3] for references).

In this article, we will introduce a new algorithm for kernel-based topo-
graphic map formation, called the Equiprobabilistic Topographic Map (ETM)
algorithm, since it is aimed at building equiprobabilistic maps, using Gaus-
sian kernels with differing variances. We will compare the performance of
our new learning algorithm with that of several other algorithms, using both
synthetic and real-world examples.

EQUIPROBABILISTIC TOPOGRAPHIC MAP FORMATION

Consider a discrete lattice A, with a regular and fixed topology, of arbitrary
dimensionality d 4, in d-dimensional input space V C ®¢. To each of the N
nodes of the lattice corresponds a formal neuron, the activation or output of
which obeys the Gaussian kernel function:

52
207}

— w2
K(v,w;,0;) =exp <—M) ; (1)

with v € V, and with w; the kernel center (“weight vector”) and o; the
kernel radius (here, the standard deviation). Depending on the degree of
neural activation, the kernel centers are adapted so as to produce a topology-
preserving mapping of the input distribution; the kernel radii are adapted

so that, on average, each kernel has an equal contribution in modeling the
input distribution. The latter 1s equivalent to having identical activation
distributions for these neurons. In order to keep the latter tractable, we
adopt for each kernel a common threshold 7 on its kernel output and require
identical sub- or supra-threshold probabilities (equiprobabilistic map).

Kernel center update

Since we are using kernel functions, rather than Winner-Take-All (WTA)
functions, we need a different type of competition between the neurons in
order to let their kernels “pave” the input space. Define the fuzzy code
membership Z; as the normalized Gaussian:
Si(v) = B VWLT) ey (2)
ZkeA K(v,wg, o)
so that 0 < Z;(v) < 1 and)", E;(v) = 1. We update the kernel center w;
proportional to Z; and in the direction of v. Hence, inputs that generate
a substantial degree of activation in several neurons — they are “shared” by
these neurons — will lead to smaller weight updates. As a result of this, there
will be a competitive element in the learning process, since the kernel centers
will tend to be “pulled” apart by the unbalanced weight update strengths.

Kernel radius update

Besides the kernel centers w;, we also need to update the kernel radii o;.
The idea 1s to adjust them in such a way that the neurons will have identical
supra-threshold activation probabilities at convergence. For the threshold,
we take the half-height point of the Gaussian kernel’s cumulative distribution
function:

)= KL (3)

with T'(.) the gamma distribution. Hence, we determine the radius of each

kernel for which the previous equation equals %, on average, given w;. We will
d |lwi=v|?
2

strive towards this solution by incrementally decreasing o; when P(T)

> % for the current input v, and by incrementally increasing it otherwise.
For this purpose, we introduce the binary variable 1;(v):

1t pd, oyl > 1
li(v) = i oped lwi=vIPy 1 “)
0 if P(g, 527)< 3,

and update ¢; so as to achieve P(1;(z) = 1) = &, Vi, with p a scale factor
(a constant). The larger p, the larger the ;s at convergence will be. In the
simulations, we will use p = 1.

Complete learning algorithm

In order to develop a topology-preserving mapping, we need to supply topo-
logical information to the learning process. We will do this in the traditional
way by supplementing the kernel center update process with a neighborhood
function specified in lattice space coordinates, A(Z, j, o), with oo the neigh-
borhood range (also in lattice space). Potentially, we could center a neigh-
borhood function around each neuron, since we have a continuously-graded
neural activations. However, in order to keep the map formation process
computationally tractable, we center the neighborhood function around the
most active neuron ¢*.!

The complete learning algorithm, called Equiprobabilistic Topographic
Map (ETM) algorithm, consists of two update rules, one for the kernel centers
and another for the kernel radii, and a cooling scheme for the neighborhood
function. The on-line? update rule for the kernel centers is:

Aw; :nZA(i,i*,aA) Ei(v)(v—w;), Vi€A, (5)
JEA
and that for the kernel radii:

Ao; =1 (%"(1 — Li(v)) —]li(v)) Vg A, (6)

with p, £ J\’;—J_Vp. A batch version of these learning rules can also be derived.

As a neighborhood function, we use a Gaussian:

ll‘i—l‘z’*Hz) ’ ™

52
20%

A(i,7",op) = exp <—

with o the neighborhood function range, and r; neuron #’s lattice coordinate.
Finally, we adopt the following neighborhood cooling scheme:

2
oa(t) = oaoexp <_20'A0t)) (8)

with ¢ the present time step, f,,4; the maximum number of time steps, and
oao the range spanned by the neighborhood function at ¢ = 0.

LATTICE DISENTANGLING DYNAMICS

The first test one should consider for any topographic map formation algo-
rithm is the ability to disentangle a lattice from a randomly-chosen initial

INote that, usually, the neighborhood function is centered around the neuron for which
the weight vector is closest to the current input. This neuron also corresponds to the one
that wins the competition in the learning process (“winner”).

2 A batch version of these learning rules can also be derived.

state. We use the standard example of a square lattice and uniform input
density. We take a 10x 10 lattice and a 2D-uniform input density [0, 1]%. The
initial weights are randomly chosen from the same input density. The radii
are initialized randomly by sampling the uniform distribution [0,0.1]. We
take ¢4 = 1,000,000 and op¢9 = b, and keep the learning rate fixed at
nw = 1072 and 5, = 0.17,,. The results are shown in Fig. 2. The radii of the
circles correspond to the standard deviations of the corresponding Gaussians.

20k

Figure 2: Evolution of a 10x10 lattice. The boxes correspond to the range spanned
by the uniform input density. The values given below the boxes represent time.

DENSITY ESTIMATION PERFORMANCE

Since each kernel corresponds to a Gaussian, with mean the corresponding
neuron’s kernel center and standard deviation the kernel radius, and since
the kernels are equiprobabilistic, we can estimate the input density p(v) in a
way similar to the classic Variable Kernel density estimation method [13]:

) = 3 ST (9)
P B pat N(?ﬂ')%af ’

namely, in terms of an equal mixture of Gaussians with differing variances. In
order to assess the density estimation performance of our algorithm, we will
consider two synthetic and one real-world example. Furthermore, we will
also run several other kernel-based topographic map formation algorithms
and compare their density estimation performances: the algorithm of Yin
and Allinson [11], the STVQ and SSOM algorithms [9], the kMER algorithm
[7], the LDE algorithm [10], and the joint entropy maximization (max(JE))
algorithm [3].

Synthetic examples

We train a 9 neuron, 1D-lattice in 1D-space and take 1, = 0.01, n, = 0.17,,
tmae = 100,000 and op¢ = 4.5. Note that, albeit the input is Gaussian, the
distribution of inputs that activate a given kernel will be non-Gaussian, since
the kernels will occupy different positions along the real line.

The density estimate p(v) and the original Gaussian distribution p(v)
are shown in Fig. 3A. The mean squared error (MSE) between p(v) and
p(v) is 2.34 10=* when calculated for 100 uniform positions in the range
shown. (Note that, instead of the MSE, we could also use the Kullback-
Leibler divergence here.) In the case of the other algorithms mentioned, we
run all simulations on the same input data, using the cooling scheme, except
for the SSOM and STVQ algorithms. For the STVQ algorithm, we take for
the neighborhood function radius o5 = 0.5, and for the equal and constant
kernel radii % = 0.01, as suggested in [9]. We also adopt these parameter
values for the SSOM algorithm, since it is in fact a limiting case of the
STVQ algorithm. Furthermore, again for the SSOM and STVQ algorithms,
since they do not adapt their kernel radii, we look for the (common) kernel
radius that optimizes the MSE between the estimated and the theoretical
distributions. In this way, we at least know that a better MSE result cannot
be obtained. We also optimize the p; parameter of kMER in this way, for
the same reason. For comparison’s sake, we also show the density estimate
for the kMER algorithm, since it is also aimed at building equiprobabilistic
topographic maps (Fig. 3B). The MSE results of all algorithms considered
are summarized in Table 1, together with the algorithms’ parameters. We
observe that most algorithms yield a similar performance.

A B

s 051 s 051
o o

04} A 04}

03} / 03}

02+ 4 3 02+

01} 01}

< N 117‘?3:?:“‘\\\
0.0 - AN 0.0 d”/j//‘*&\\\\\\&.‘

-4 -2 0 2 4 -4 -2 0 2 4

Figure 3: One-dimensional, unit-variance Gaussian input density (thick dashed
line) and the estimates (thick continuous lines) obtained with our algorithm ETM
(A) and kMER (B), when 9 kernels are used (thin continuous lines). Abbreviation:
pd = probability density.

Table 1: Density estimation performance (in MSE) for the standard normal distri-
bution for different algorithms. The algorithms’ parameter settings are also given.

Algorithm Parameters MSE

ETM Nw = 0.01, 5, = 0.1, 2.34107%
Yin & Allinson Nw = 0.001, n, = 0.1, 1.18 1074
STVQ % =0.01, 04 = 0.5, 0opr = 0.555 | 1.99 1072
SSOM % =0.01, oA = 0.5, opr = 0.520 | 1.99 1073
kMER nw = 0.001, p, =1, p; = 4.58 1.75 1074
LDE Nw = 0.01, 5, = 0.1, 7.05 1074
max(JE) Ny = 0.001, 5, = 0.1, 9.35107°

For the second example, we take a skewed distribution consisting of a
mixture of two Gaussians, G(0,1) and G(1.5,1/3), with mixing coefficients
3/4 and 1/4. We re-run the algorithms using the same settings as in the
first example. The resulting MSE equals 6.99 10~%, for the ETM algorithm,
and 5.49 10~* for kMER. The corresponding density estimates are shown
in Fig. 4A B, respectively. The MSE results for all algorithms are listed in
Table 2, from which we can verify that the ETM algorithm performs best.

A B

s 05+ s 05+
o o

0.4} 0.4}
034+ 034+
024+ 024+
01} 01}

0.0 | 0.0 |

-4 4 -4 4

\" \"

Figure 4: One-dimensional mixture of two Gaussians, with differing radii and mix-
ing coefficients. Same conventions as in Fig. 3.

Real-world example

The example is a classic benchmark in the density estimation literature. The
data set consists of 222 observations of eruption lengths of the Old Faithful
geyser in Yellowstone National Park, and was compiled by Weisberg [13].
Since we now do not dispose of the theoretical distribution, we only show the
density estimates (Fig. 5), except for the SSOM algorithm since the result is
quite similar to that of the STVQ algorithm.

Table 2: Density estimation performance for a skewed bimodal distribution con-
sisting of two Gaussians.

Algorithm Parameters MSE

ETM Nw = 0.01, n, = 0.1, 6.99 10-°
Yin & Allinson Nw = 0.001, n, = 0.1, 9.06 10~*
STVQ % =0.01, oA = 0.5, oopr = 0.495 | 2.17 1073
SSOM % =0.01, A = 0.5, op; = 0.450 | 1.88 1073
LDE Nw = 0.01, n, = 0.1, 7.17107*
kMER nw = 0.001, p, =1, p; = 2.32 5.49 10~*
max(JE) Ny = 0.001, 5, = 0.1, 4.18 1074

Furthermore, for comparison’s sake, we also consider a more traditional
variable kernel density estimation method, namely, the adaptive unbiased
cross-validation (adaptive UCV) method [14], which allocates a kernel at
each data point. The adaptive UCV method has been shown to yield par-
ticularly good results, compared to other traditional methods, on the Old
Faithful geyser data set [14]. The adaptive UCV result is superimposed on
the density estimates shown in Fig. 5. We observe that the ETM algorithm
best approximates the UCV result for the valley between two peaks, as well
as their locations. However, one should be aware of the fact that the UCV
result is in itself an approximation of the unknown true density distribution.

CONCLUSION

We have introduced a new learning algorithm for kernel-based topographic
map formation, called Equiprobabilistic Topographic Map (ETM) algorithm.
The kernels are Gaussians, and their centers and ranges are individually
adapted so as to yield an equiprobabilistic topographic map (whence the
algorithm’s name). The converged map also yields a density estimate in
terms of an equal mixture of heteroscedastic Gaussians. We have compared
the density estimation performance of our algorithm to that of several other
kernel-based topographic map formation algorithms. The results show that
our algorithm performs best, or is among the best performing algorithms.

Acknowledgments

M.M.V.H. is supported by research grants received from the Fund for Scien-
tific Research (G.0185.96N), the National Lottery (Belgium) (9.0185.96), the
Flemish Regional Ministry of Education (Belgium) (GOA 95/99-06; 2000/11),
the Flemish Ministry for Science and Technology (VIS/98/012), and the Eu-
ropean Commission (QLG3-CT-2000-30161 and 1ST-2001-32114). The au-

thor is solely responsible for the contents of this article. It does not represent

the opinion of the Community, which is also not responsible for any use that
might be made of data appearing therein.

REFERENCES

(1]

2]
(3]
[4]

[5]

[8]

[9]

T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biol. Cybern., vol. 43, pp. 59-69, 1982.

T. Kohonen, Self-organizing maps, Heidelberg: Springer, 1995.

M.M. Van Hulle, “Joint entropy maximization in kernel-based topo-
graphic maps,” Neural Computat., vol. 14, 2002, in press.

R. Durbin and D. Willshaw “An analogue approach to the travelling
salesman problem using an elastic net method” Nature, vol. 326, pp. 689-

691, 1987.

C.M. Bishop, M. Svensén, and C.K.I. Williams, “GTM: The generative
topographic mapping. Neural Computat., vol. 10, pp. 215-234, 1998.

A. Utsugi “Hyperparameter selection for self-organizing maps,”
Neural Computat., vol. 9, pp. 623-635, 1997.

M.M. Van Hulle, “Kernel-based equiprobabilistic topographic map for-
mation,” Neural Computation, vol. 10, pp. 1847-1871, 1998.

M.M. Van Hulle Faithful representations and topographic maps: From
distortion- to information-based self-organization, New York: Wiley,

2000.

T. Graepel, M. Burger, and K. Obermayer, “Phase transitions
in stochastic self-organizing maps,” Physical Review E, vol. 56(4),

pp. 3876-3890, 1997.

M.M. Van Hulle, “Kernel-based topographic map formation by local
density modeling,” Neural Computat., vol. 14, 2002, in press.

H. Yin and N.M. Allinson, “Self-organizing mixture networks for
probability density estimation,” IEEE Trans. Neural Networks, vol. 12,
pp. 405-411, 2001.

T. Kostiainen and J. Lampinen, “Generative probability density model
in the self-organizing map,” Self-organizing neural networks: Recent
advances and applications, U. Seiffert & L. Jain (Eds.), pp. 75-94. Hei-
delberg: Physica Verlag, 2002.

B.W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman and Hall: London, 1992.

S.R. Sain and D.W. Scott, “On Locally Adaptive Density Estimation”
J. American Statistical Association, vol. 91, pp. 1525-1534, 1996.

Figure 5: Density estimates obtained for the Old Faithful geyser eruption lengths
data set with our ETM algorithm (A), the kMER algorithm (B), Yin and Allinson’s
algorithm (C), and the STVQ (D), LDE (E), and max(JE) algorithms (F) (thick
continuous lines). The N = 9 converged kernels (thin continuous lines), as well
as the estimate obtained with the more traditional adaptive UCV method (thick
dashed line), are also shown in each of these plots.

