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ABSTRACT 
 
The performance of six neuromorphic adaptive structurally different 
algorithms was analyzed in blind separation of independent artificially 
generated signals using the stationary linear independent component analysis 
(ICA) model. The estimated independent components were ranked and 
compared among different ICA approaches. All algorithms were run with 
different contrast functions, which were optimally selected on the basis of 
maximizing the sum of individual negentropies of the network outputs. Both 
subgaussian and supergaussian one-dimensional time series were employed 
throughout the numerical simulations. 
 
 
INTRODUCTION 
 
In many areas like data analysis, signal processing, and neural networks, a 
common task is to find an adequate representation of multivariate data for 
subsequent processing and interpretation. Linear transforms are often invoked due 
to their computational and conceptual simplicity. ICA has emerged as an 
extension of a linear transform called Principal Component Analysis (PCA), 
which has been developed in context with Blind Source Separation (BSS) in 
Digital Signal Processing (DSP) and array processing [1]. In its full generality, 
ICA amounts to blind model identification with minimal suppositions.  
 
 
ICA MODEL 
 
Our stationary linear ICA model considered hereafter (Fig. 1) assumes 

( ) ( )∈tt nx   , Nℜ , and ( )∈ts Mℜ  three random vectors with zero mean and finite 
covariance, with the components of ( )ts  being statistically independent and at 
most one gaussian, whereas A is a rectangular constant full column rank MN ×  
matrix with at least as many rows as columns ( MN ≥ ): 
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where the columns M,...,2,1ii =  , a  of the mixing matrix A are the basis vectors 
of ICA. The sample index t is assumed to take discrete values T,...,2,1t = . Mixing 
is supposed to be instantaneous, so there is no time delay between the (latent) 
source variable ( )tsi  mixing into an observable variable ( )tx j . Within this 
framework, the ICA problem can be formulated as follows [2]: given T 
realizations of ( )tx , estimate both the matrix A and the corresponding realizations 
of ( )ts . In BSS the task is to find the waveforms ( ){ }tsi  of the sources knowing 
only the mixtures ( ){ }tx j . The noise-free ICA model corresponds to the absence of 

noise term ( )tn . 

 
Figure 1: Mixing (A) and separating (B) source signals (s). 

 
If the size of ( )tx  is greater than the size of ( )ts , that is NM < , the problem 

is over-determined and the extra data can be used for reducing noise. This is 
accomplished by projecting the input data ( )tx  into its M-dimensional signal 
subspace using for example PCA whitening. Contrarily, if the ICA problem is 
under-determined ( NM > ), then we expect the most energetic independent 
components still to be separated and the rest to come out as linear combinations in 
the remained estimates. 

Adaptive source separation consists in updating a NM × separating matrix 
( )tB , without resorting to any information about the spatial mixing matrix A, so 

that the vector  

( ) ( ) ( )ttt xBy  =                     (2) 
becomes an estimate ( ) ( )tˆt sy =  of the original independent source signals ( )ts . In 
neural implementations, ( )ty  is the output vector of the network, and the full 
separating matrix ( )tB  is the total weight matrix between the input and the output 
layers. The estimate ( )tŝi  of the i-th source signal may appear in any component 

( )ty j  of ( )ty . The ICA model can be resolved up to the product of a permutation 
and a diagonal matrix, because without prior information on the amplitude of the 
source signals nor on the matrix A, the scale of each source signal is unobservable. 
The permutation indeterminacy stems from the immateriality of labeling the 
source signals. 

Since ICA deals with higher-order statistics it is justified to normalize in some 
sense the first- and second-order moments. The effect is that the separating matrix 
is divided in two parts dealing with dependencies in the first two moments, e.g. 



the whitening matrix ( )tV , and the dependencies in higher-order statistics, e.g. the 
orthogonal separating matrix ( )tW  in the whitened space (Fig. 1). If we assume 
zero-mean observed data ( )tx , then by whitening we get a vector ( ) ( ) ( )ttt xVv  =  
with decorrelated components. The subsequent linear transform ( )tW  seeks the 
solution by an adequate rotation in the space of component densities and yields 

( ) ( ) ( )ttt vWy  = , which is the relationship between the whitening and the output 
layer of the network (Fig. 2). The total separation matrix between the input and 
the output layer becomes ( ) ( ) ( )ttt VWB   = . 

 
Figure 2: The architecture of a feedforward neural network performing BSS and providing 

the basis vectors of ICA as columns of the estimated mixing matrix Â . 
 

In the standard stationary case, the whitening and the orthogonal separating 
matrices converge to some constant values during learning. The same model can 
nevertheless be used in nonstationary cases by keeping these matrices time-
varying. Standard PCA is often used for whitening because information can be 
optimally compressed in the mean-square error sense and filter possible noise out. 

Note that if the source signals are temporally correlated, then the spatial blind 
deconvolution (separation) may be based on 2nd-order statistics only [3], and 
separation of gaussian sources is possible. 
 
 
STATISTICAL INDEPENDENCE AND ESTIMATION PRINCIPLES FOR ICA 
 
If a multidimensional random variable Nℜ∈x  has the probability density 
function ( )xxf , then the independence of the N scalar random variables ix , 

N,...,2,1i = , that is, the components of x, having the probability density functions 
( )ix xf

i
, respectively, is defined by the factorization of the joint density: 

( ) ( )∏
=

=
N
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i
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A meaningful treatment of the concept of independence relies on information 
theory, which means deriving the criterion for statistical independence from the 
statistical properties of data. Entropy is such a criterion based on the amount of 
information contained in some occurrences of a random variable. In the case of a 



multidimensional continuous random variable x with density ( )xxf , the 
differential entropy is defined as: 

( ) ( ) ( ) uuux xx dflogfH   ∫−=                  (4) 

Differential entropy is invariant to orthogonal transforms and it is upper bound, 
but is no longer invariant to invertible transforms as entropy is. Therefore, two 
other concepts are employed as contrast functions that are endowed with the 
invariance property, namely negentropy and mutual information.  

For a multidimensional continuous random variable x with the density ( )xxf , 
to which is associated a gaussian variable Gx  with the same covariance matrix 
like x, the negentropy is defined in terms of differential entropy: 
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which can be interpreted as the distance from gaussianity expressed in the form of 
Kullback-Leibler (KL) divergence. Though not really a distance since it is not 
symmetric, the KL divergence behaves as a statistical measure of "distance" 
between two distributions. It is always nonnegative and takes the value 0 iff the 
distributions are identical. Hence negentropy is always nonnegative, reaches its 
minimum for a gaussian random variable, and it is invariant to linear invertible 
transforms.  

The mutual information (MI) is also related with (differential) entropy. For 
the general case of N (scalar) random variables ix , N,...,2,1i =  the mutual 
information is given by: 
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It turns out that MI is symmetric, zero iff the factorization of the joint density 
( )xxf  holds (e.g. the components are independent), and it is strictly positive 

otherwise. Comparing the form of negentropy in (5) and MI in (6), it comes out 
that if a gaussian multivariate is a reasonable approximation to the product of the 
marginal densities, then negentropy is a means to estimate the MI and, implicitly, 
a measure of independence.  

If we consider the basic linear ICA model Bxy = , then MI between the 
estimated independent components N,...,2,1i,yi =   becomes: 

( ) ( ) ( ) ( ) ( ) ( )Bxy detlogHyHHyHy,...,y,yI
N
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If the scalar random variables N,...,2,1iyi =  ,  are constrained to be uncorrelated, 
then Bdet  is constant.  

( ) ( ) constantyHy,...,y,yI
N

1i
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=

               (8) 



where the constant that does not depend on B. Moreover, since the estimations iy  
are assumed of unit variance, entropy and negentropy differ only by a constant and 
the sign. Therefore, MI and negentropy differ by a constant only: 

( ) ( ) constantyJy,...,y,yI
N

1i
iN21 +−= ∑

=

               (9) 

which explicitly shows that minimizing pairwise the MI of the random variables 
N21 y,...,y,y  equates to maximizing the sum of their individual negentropies 

( ) ( ){ }iyi yflogEyH
i

 −= . But because a gaussian density has maximal 

(differential) entropy, this also means minimizing the gaussianities of the random 
variables N,...,2,1i,yi =  .  

It is nevertheless quite difficult to compute both the KL divergence and 
negentropy. The approximations for negentropy introduced by Hyvärinen [4] for a 
scalar random variable y with zero mean, unit variance, and p functions iG  are: 

( ) ( ){ } ( ){ }[ ]2
Gii

p

1i
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=

             (10) 

where iG  are practically any nonquadratic functions, ik  are some positive 
constants, and Gy  is a gaussian variable with zero mean and unit variance as y. 

When using only two nonlinear functions, ( )2yexpyG 2
1 −= , which measures 

the asymmetry, and an even one, yG2 = , which measures the sparsity/bimodality 
of an 1D nongaussian distribution, the approximate entropy becomes simpler [4]: 

( ) ( ) ( ){ }( ) ( ){ } ( ){ }( )[ ]2
G222

2
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Two practical implementations of (11) used in our experimental evaluations were: 
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We based our algorithm ranking on the strict monotonicity of negentropy 
computed according to (12). 
 
 
ALGORITHMS FOR ICA 
 
Apart from the estimation principle of ICA expressed in the form of an objective 
function subject to optimization, an algorithm is needed for implementing the 
necessary computations. Since nonquadratic functions are generally involved by 
the estimation methods, numerical algorithms are needed, which are quite 
computationally demanding. The current algorithms for ICA can loosely be 
classified in two categories. One category contains adaptive algorithms generally 



based on stochastic gradient methods and implemented in neural networks [5], [6], 
[7]. Adaptive algorithms may also be based either on optimization of cumulant-
based contrast functions [8], or on "estimating equations" involving nonlinear 
distortions of the output ( )ty  [9]. The neural adaptive algorithms exhibit slow 
convergence and their convergence depends crucially on the correct choice of the 
learning rate parameters. The second category relies on batch computation 
optimizing some relevant criterion functions [1], [10]. Generally, they imply 
complex matrix or tensorial operations. Neuromorphic block technique algorithms 
based on 2nd- and 4th-order cumulants [11], as well as (quasi)-likelihood 
approaches were also proposed [12]. 
 
Algorithm assessment 
 
Having known the original source components, the accuracy of separating power 
of the independent components of an ICA algorithm can be measured by means of 
various indexes. We will assume hereafter NM = . One index used as a global 
figure of merit for the separation performance may be defined as signal-to-
interference ratio such as: 

( )
( )∑

= −
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where BAQ =  is the overall transforming matrix of the source components, iQ  is 

the i-th column of Q, ( )iQmax  is the maximum element of iQ , and N is the 
number of source signals. The higher SIR is, the better the separation performance 
of the algorithm. A second index, CTE, which was used to measure the accuracy 
of retrieving the independent components, is the distance between the overall 
transforming matrix Q and an ideal permutation matrix, which is interpreted as the 
cross-talking error [13]: 
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Above, ijQ  is the ij-th element of Q, iQmax  is the maximum absolute valued 

element of the row i in Q, and jQmax  is the maximum absolute valued element 

of the column j in Q. A permutation matrix is defined so that on each of its rows 
and columns, only one of the elements equals to unity while all the other elements 
are zero. It means that CTE attains its minimum value zero for an exact 
permutation matrix.  
 
Ranking the estimates 
 
Ranking the estimated independent components was another criterion used for 
assessing the reliability of ICA algorithms. Friedman [14] proposed a robust 
structural measure to arrange the ICA basis vectors. The idea is to first sphere the 



data and then to map them into the interval [ ]10  ,  with the gaussian cumulative 
density function ( )vΦ . For T  realizations of a (scalar) random variable ( )tyk  the 
proposed scheme leads to the index for the k-th estimated independent component: 
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where { }tσ  are the indexes of the ordered ( ){ }tyk  in such a way that ( ) ( )jyiy kk ≤  
iff ji σσ ≤ . The higher ( )k1 yE  is, the more structural information contains the k-
th estimated independent component. 

It is meaningful sorting the components by the extent of their contribution to 
the original data. The contribution of the estimated component ( )tyk  can be 
estimated by the root mean square (RMS) of the data set reconstructed solely from 
this component yAx ˆˆ =  in which y has only one nonzero row corresponding to the 
appropriate component, or as the RMS error introduced per data point when the 
data x are reconstructed without this component: 
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where k
jtC  is the element of an TN ×  matrix computed from the outer product of 

the k-th independent component and the k-th column of Â , that is kt
1

jk
k
jt YBC −= . 

The higher ( )k2 yE  is, the higher the contribution of the component ( )tyk  to the 
observed data. 

  

 
Figure 3: Artificially generated signals (up) and their histograms (bottom). Both 
subgaussian (left) and supergaussian (right) signal distributions were considered. 

 



RESULTS AND DISSCUSSION 
 
In our simulations, we used 6 different artificially generated time series of 512 
samples each, both subgaussian and supergaussian (Fig. 3). 

Table 1. The analytical form and the 3-rd and 4-th order cumulants of the sources. 

Source signal Skewness Kurtosis 
Modulated sinusoid: 

( ) ( ) ( )8cos149sin21 ttS ∗∗=  
024637.0  551312.0−  

Square waves: 
( ) ( )( )( )292cos912sin2 ∗+∗= tsignS  015638.0  996568.1−  

Saw-tooth: ( ) ( )( ) 231779,3 −= tremS  101021.0  191073.1−  

Impulsive curve: ( ) ( )( )( )591123,4 −= tremS  011980.0−  353211.2  

Exponential decay: 
( ) ( ) ( )ttS ∗∗−∗= 37cos121exp55  

055131.0  410776.3  

Spiky noise: 
( ) ( )( )( ) ( )( )TrandTrandS ,1log125.,16 ∗−∗<=  

464295.0  228476.2  

Table 2. The origin of code sources for the neurally implemented ICA algorithms. 

Algorithms Type Source 

FastICA original  http://www.cis.hut.fi/projects/ica/fastica 
BS modified http://www.sccn.ucsd.edu/~scott/ica.html and [15] 
ACY personal as described in [7] 
EASI modified http://sig.enst.fr/~cardoso/guidesepsou.html 
Pearson-ICA modified http://wooster.hut.fi/statsp/papers/Pearson_ICA.zip 
EGLD-ICA modified http://wooster.hut.fi/statsp/papers/EGLD_ICA.zip 

Table 3. Nonlinearities and the sum of negentropies of the algorithms under study. 

Sum of negentropies Algorithms Nonlinearities and score 
functions aJ  bJ  

FastICA ( ) ( )2exp 2yyyg −=  1.67 ± 0.028 1.25 ± 0.012 

BS-Infomax ( ) ( )yyyg tanh±=  1.0 ± 0.23 0.8 ± 0.35 
ACY ( ) ( )yyyg tanh−=  0.8 ± 0.50 0.6 ± 0.19 
EASI ( ) ( )yyg tanh−=  0.5 ± 0.48 0.4 ± 0.35 

Pearson-ICA ( )
ybybb

ay
y

210 ++
−

−=ϕ  0.96 ± 0.075 0.8 ± 0.66 

EGLD-ICA ( ) ( )
2

1
1

43 1
λ

λ
λλ pp

pF
−−

+=−  1.02 ± 0.095 0.89 ± 0.23 



All codes were in MATLAB 6.0 and simulations were run on a PC machine with 
Pentium 4 processor and CPU at 1.5 MHz. The higher-order statistics of the 
source signals are presented in Table 1. The sources for the MATLAB codes are 
indicated in Table 2, whereas the optimal contrast functions and the sum of the 
individual negentropies for each algorithm are presented in Table 3. The 
separation performance of the algorithms under test is resumed in Table 4, where 
the indexes of the retrieved estimates correspond to the input data sequence. 

Table 4. Indexes of performance and the retrieval sequence of the source signals. 

Algorithms SIR [dB] CTE  1E  2E  
FastICA 17.1 ± 3.51 0.65 ± 0.12 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

BS 12.2 ± 4.72 1.12 ± 0.33 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

ACY 13.5 ± 3.86 0.90 ± 0.41 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

EASI 7.02 ± 5.30 2.30 ± 1.39 142536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

Pearson 7.93 ± 2.88 2.14 ± 1.74 142536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

EGLD 8.21 ± 3.75 2.10 ± 1.56 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

 

CONCLUSIONS 
 
According to our simulations with six artificially generated time series the best 
ICA algorithm in terms of convergence, computational requirements, and 
parameters to be tuned is the FP FastICA with symmetric orthogonalization and 
exponential nonlinearity. Its stabilized version converges always to a definite 
subspace of meaningful components even if the statistical independence is weak. 
Though the BS and ACY algorithms are theoretically optimal in terms of mutual 
information, their computational cost is higher whereas the results are similar with 
the FP. Moreover, like all neural unsupervised algorithms, both BS and ACY 
algorithms are heavily dependent on the learning rates and their convergence is 
quite slow. The Pearson and EGLD algorithms employing the ML principle 
separate a relative wide class of nongaussian source signals of large interest, even 
skewed distributions with zero kurtosis. However, Pearson system's ability is to 
model distributions that are close to normal distribution constrains its applications 
since it has no particular advantages for modeling distributions far from normality. 
As both estimators for parameters and score function are simple rational functions 
both Pearson-ICA and EGLD algorithms are computationally fast. However, the 
error margins are sensibly larger than in the case of FP, BS and ACY algorithms.  
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