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ABSTRACT

The performance of six neuromorphic adaptive structurally different
algorithms was analyzed in blind separation of independent artificially
generated signals using the stationary linear independent component analysis
(ICA) model. The estimated independent components were ranked and
compared among different ICA approaches. All algorithms were run with
different contrast functions, which were optimally selected on the basis of
maximizing the sum of individual negentropies of the network outputs. Both
subgaussian and supergaussian one-dimensional time series were employed
throughout the numerical simulations.

INTRODUCTION

In many areas like data analysis, signal processing, and neural networks, a
common task is to find an adequate representation of multivariate data for
subsequent processing and interpretation. Linear transforms are often invoked due
to their computational and conceptual simplicity. ICA has emerged as an
extension of a linear transform called Principal Component Analysis (PCA),
which has been developed in context with Blind Source Separation (BSS) in
Digital Sgnal Processing (DSP) and array processing [1]. In its full generality,
ICA amounts to blind model identification with minimal suppositions.

ICA MODEL

Our detionary linear ICA model considered hereafter (Fig. 1) assumes
x(t), n(t)7 AN, and St)i AM three random vectors with zero mean and finite
covariance, with the components of s(t) being statistically independent and at

most one gaussian, whereas A is a rectangular constant full columnrank N” M
matrix with at least as many rows as columns (N 3 M ):

x(t)=Ast)+n(t)=a s (t)a +n(t) (1)
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where the columns a, , i =1.2,...,M of the mixing matrix A are the basis vectors

of ICA. The sample index t is assumed to take discrete values t =1,2,...,T . Mixing
is supposed to be instantaneous, so there is no time delay between the (latent)
source varisble s(t) mixing into an observable varigble x,(t). Within this

framework, the ICA problem can be formulated as follows [2]: given T
realizations of x(t), estimate both the matrix A and the corresponding realizations

of St). In BSS the task is to find the waveforms {s (t)} of the sources knowing
only the mixtures {x, (t)} . The noise-free ICA mode! corresponds to the absence of
noiseterm n(t).
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Figure 1: Mixing (A) and separating (B) source signals ().

If the size of x(t) is greater than the size of s(t), thatis M < N, the problem
is over-determined and the extra data can be used for reducing noise. This is
accomplished by projecting the input data x(t) into its M-dimensional signa
subspace using for example PCA whitening. Contrarily, if the ICA problem is
under-determined (M >N), then we expect the most energetic independent
components still to be separated and the rest to come out as linear combinationsin
the remained estimates.

Adaptive source separation consists in updating a M~ N separating matrix
B(t), without resorting to any information about the spatial mixing matrix A, so
that the vector

y(t)=B(t)x(t) 2
becomes an estimate y(t):§(t) of the original independent source signals s(t) In
neural implementations, y(t) is the output vector of the network, and the full
separating matrix Bit) is the total weight matrix between the input and the output
layers. The estimate S(t) of the i-th source signal may appear in any component
Y (t) of y(t). The ICA model can be resolved up to the product of a permutation

and a diagonal matrix, because without prior information on the amplitude of the
source signals nor on the matrix A, the scale of each source signal is unobservable.
The permutation indeterminacy stems from the immateriality of labeling the
source signals.

Since ICA deals with higher-order statisticsit isjustified to normalize in some
sense the first- and second-order moments. The effect is that the separating matrix
is divided in two parts dealing with dependencies in the first two moments, e.g.



the whitening matrix V(t), and the dependencies in higher-order statistics, e.g. the
orthogonal separating matrix W(t) in the whitened space (Fig. 1). If we assume
zero-mean observed data x(t), then by whitening we get a vector v(t)=V(t)x(t)
with decorrelated components. The subsequent linear transform W(t) seeks the
solution by an adequate rotation in the space of component densities and yields
y(t)=W(t)v(t), which is the relationship between the whitening and the output
layer of the network (Fig. 2). The total separation matrix between the input and
the output layer becomes B(t)=W(t)V(t).
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Figure 2: The architecture of afeedforward neural network performing BSS and providing
the basis vectors of ICA as columns of the estimated mixing matrix A .

In the standard stationary case, the whitening and the orthogonal separating
matrices converge to some constant values during learning. The same model can
nevertheless be used in nonstationary cases by keeping these matrices time-
varying. Standard PCA is often used for whitening because information can be
optimally compressed in the mean-square error sense and filter possible noise out.

Note that if the source signals are temporally correlated, then the spatial blind
deconvolution (separation) may be based on 2nd-order statistics only [3], and
separation of gaussian sourcesis possible.

STATISTICAL INDEPENDENCE AND ESTIMATION PRINCIPLESFOR ICA

If a multidimensional random variable x1 AN has the probability density
function f,(x), then the independence of the N scalar random variables x,
i=12,...,N, that is, the components of X, having the probability density functions
f, (x ), respectively, is defined by the factorization of the joint density:

f(x)= 5 f(x) 3

A meaningful treatment of the concept of independence relies on information
theory, which means deriving the criterion for statistical independence from the
statistical properties of data. Entropy is such a criterion based on the amount of
information contained in some occurrences of a random variable. In the case of a



multidimensional continuous random varisble x with density f (x), the
differential entropy is defined as:

H(x)=- ¢, (u)log f,(u)du (4)

Differential entropy is invariant to orthogonal transforms and it is upper bound,
but is no longer invariant to invertible transforms as entropy is. Therefore, two
other concepts are employed as contrast functions that are endowed with the
invariance property, namely negentropy and mutual information.

For a multidimensional continuous random variable x with the density f,(x),

to which is associated a gaussian variable x5 with the same covariance matrix
like x, the negentropy is defined in terms of differential entropy:

3)=Hix,)- H(x):bfx(u)log:—X((%du:K(xle) )

Xe

which can be interpreted as the distance from gaussianity expressed in the form of
Kullback-Leibler (KL) divergence. Though not redly a distance since it is not
symmetric, the KL divergence behaves as a statistical measure of "distance”
between two distributions. It is aways nonnegative and takes the value 0 iff the
distributions are identical. Hence negentropy is always nonnegative, reaches its
minimum for a gaussian random variable, and it is invariant to linear invertible
transforms.

The mutual information (MI) is aso related with (differential) entropy. For
the general case of N (scalar) random variables x ,i =12,..,N the mutual

information is given by:

f (x) & ~ 0
(X, 1% 50y X :°Hxi-Hx:‘fXon X dx=Kex|OQxz (6
(e ) =3 ) ()O()gOfx.(xi) Oxz @
It turns out that M1 is symmetric, zero iff the factorization of the joint density
f (x) holds (e.g. the components are independent), and it is strictly positive

otherwise. Comparing the form of negentropy in (5) and Ml in (6), it comes out
that if a gaussian multivariate is a reasonable approximation to the product of the
marginal densities, then negentropy is a means to estimate the M1 and, implicitly,
ameasure of independence.

If we consider the basic linear ICA model y =Bx, then MI between the

estimated independent components y,, i =1,2,...,N becomes:

l(yl,yz,---,yN)=ifé?t1 H(y)- H(y)=& H(%)- H(x)- log|det(B) (7)

=1

If the scalar random variables vy, , i =1,2,...,N are constrained to be uncorrelated,
then det B isconstant.

I(ylvyza---ayN):é, H(yi)+constant )



where the constant that does not depend on B. Moreover, since the estimations ;

are assumed of unit variance, entropy and negentropy differ only by a constant and
the sign. Therefore, MI and negentropy differ by a constant only:

I(yliyZ',__'yN):_éN J(yi)+constant 9)

which explicitly shows that minimizing pairwise the M| of the random variables
Vi, Yo, Yy €Quates to maximizing the sum of their individual negentropies

H(y,)=- E{log fy‘(yi)}. But because a gaussian density has maximal

(differential) entropy, this also means minimizing the gaussianities of the random
variables y,, i =1,2,...,N .

It is nevertheless quite difficult to compute both the KL divergence and
negentropy. The approximations for negentropy introduced by Hyvérinen [4] for a
scalar random variable y with zero mean, unit variance, and p functions G, are:

3)> & k[ElG ) ElG (v ) (10

where G, are practically any nonquadratic functions, k are some positive
constants, and y,; is a gaussian variable with zero mean and unit variance asy.

When using only two nonlinear functions, G, = yexp(— y? / 2), which measures
the asymmetry, and an even one, G, = |y| , which measures the sparsity/bimodality
of an 1D nongaussian distribution, the approximate entropy becomes simpler [4]:

H(y)» H(ve)- (B, +ka(ElG, () - ElG.(ve )] 1)

Two practical implementations of (11) used in our experimental evaluations were:
H.0)=H(ye)- & [Elvel v2/2lf +iclell- V2o
Hu(y)=H(ve)- Galelvernl v ) +ielEfot: v7/2)- J12]

We based our algorithm ranking on the strict monotonicity of negentropy
computed according to (12).

(12)

ALGORITHMSFOR ICA

Apart from the estimation principle of ICA expressed in the form of an objective
function subject to optimization, an algorithm is needed for implementing the
necessary computations. Since nonquadratic functions are generaly involved by
the estimation methods, numerical algorithms are needed, which are quite
computationally demanding. The current algorithms for ICA can loosely be
classified in two categories. One category contains adaptive algorithms generally



based on stochastic gradient methods and implemented in neural networks [5], [6],
[7]. Adaptive algorithms may also be based either on optimization of cumulant-
based contrast functions [8], or on "estimating equations’ involving nonlinear
distortions of the output y(t) [9]. The neural adaptive algorithms exhibit slow

convergence and their convergence depends crucially on the correct choice of the
learning rate parameters. The second category relies on batch computation
optimizing some relevant criterion functions [1], [10]. Generaly, they imply
complex matrix or tensorial operations. Neuromorphic block technique agorithms
based on 2nd- and 4th-order cumulants [11], as well as (quasi)-likelihood
approaches were also proposed [12].

Algorithm assessment

Having known the original source components, the accuracy of separating power
of the independent components of an ICA agorithm can be measured by means of
various indexes. We will assume hereafter M =N . One index used as a global
figure of merit for the separation performance may be defined as signal-to-
interference ratio such as:
18 max(Q, )
SR=- =3 10log,, —— =/ @) > (dB) (13)
N QQ- maX(Qi)
where Q =BA isthe overal transforming matrix of the source components, Q is

the i-th column of Q, max(Q) is the maximum element of Q, , and N is the

number of source signals. The higher SR is, the better the separation performance
of the algorithm. A second index, CTE, which was used to measure the accuracy
of retrieving the independent components, is the distance between the overall
transforming matrix Q and an ideal permutation matrix, which is interpreted as the
cross-talking error [13]:

yay Q) 8y 0
a‘?a -1+ada— -1
16 il "8 @ mpo]
Above, Q; is the ij-th element of Q, maxQ| is the maximum absolute valued

element of therow i in Q, and maxin| is the maximum absolute valued element

of the column j in Q. A permutation matrix is defined so that on each of its rows
and columns, only one of the elements equals to unity while all the other elements
are zero. It means that CTE attains its minimum vaue zero for an exact
permutation matrix.

(14)

Ranking the estimates

Ranking the estimated independent components was another criterion used for
assessing the reliability of ICA agorithms. Friedman [14] proposed a robust
structural measure to arrange the ICA basis vectors. The ideais to first sphere the



data and then to map them into the interval [0, 1] with the gaussian cumulative
density function F (v). For T realizations of a (scalar) random variable y, (t) the
proposed scheme leads to the index for the k-th estimated independent component:

E(v)=8 &% - =- 1% (15)

where {s,} are the indexes of the ordered {y, (t}} in such away that y, (i)£ v, (j)
iff s, £s,. Thehigher E,(y,) is, the more structural information contains the k-
th estimated independent component.

It is meaningful sorting the components by the extent of their contribution to
the original data. The contribution of the estimated component vy, (t) can be
estimated by the root mean square (RMYS) of the data set reconstructed solely from
this component X = Ay in which y has only one nonzero row corresponding to the
appropriate component, or as the RMS error introduced per data point when the
data x are reconstructed without this component:

25 ]/2

1 €y ¢ .
e 8l )él (16)
j=1 t=1

where Ck isthe element of an N” T matrix computed from the outer product of

the k-th independent component and the k-th column of A , that is Ck =B; Y, -

The higher E,(y,) is, the higher the contribution of the component yk( ) to the
observed data.
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Figure 3: Artificialy generated signals (up) and their histograms (bottom). Both
subgaussian (left) and supergaussian (right) signal distributions were considered.



RESULTS AND DISSCUSSION

In our simulations, we used 6 different artificialy generated time series of 512
samples each, both subgaussian and supergaussian (Fig. 3).

Table 1. The anaytical form and the 3-rd and 4-th order cumulants of the sources.

Source signal Skewness Kurtosis

Modulated sinusoid:

S(l) =% Sin(t /1 49)* o s(t /8) 0.024637 - 0.551312
Square waves: )

5(2) = sign(sinf12* t + 9 cos(2/29)) 0.015638 1.996568
Saw-tooth: S(3) = (rem(t,79)- 17)/23 0.101021 -1.191073
Impulsive curve: S(4) = ((rem(t,23)- 11)/9)° - 0011980 2353211

Exponential decay:

5(5) = 5* exp(- t/121)* cos(37* 1) 0055131 3410776

Spiky noise: 0.464295 2.228476

S(6) = ((rand(1,T) < .5)* 2- 1)* log(rand(1,T))

Table 2. The origin of code sources for the neurally implemented ICA algorithms.

Algorithms Type Source

FastICA origind  http://www.cis.hut.fi/projects/icalfastica

BS modified http://www.sccn.ucsd.edu/~scott/icahtml and [15]
ACY personal  asdescribedin [7]

EASI modified http://sig.enst.fr/~cardoso/guidesepsou.html

Pearson-ICA  modified http://wooster.hut.fi/statsp/papers/Pearson_|CA.zip

EGLD-ICA modified http://wooster.hut.fi/statsp/papersEGLD_ICA.zip

Table 3. Nonlinearities and the sum of negentropies of the algorithms under study.

Sum of negentropies

Algorithms Nonlinearities and score
functions Ja o
FastiCA aly)= yexpl- y?/2) 1.67+0.028 1.25+0.012
BSinfomax  g(y)=y+tanh(y) 1.0+0.23 0.8£0.35
ACY g(y)=y- tanh(y) 0.8+0.50 0.6+0.19
EASI g(y) =- tanh(y) 0.5+ 048 041035
. -a
Pearson-ICA  j (y)=- — Y~ & 096+0.075 0.810.66
( ) b, +by+b,y

EGLD-ICA F'l(p) =| +M 1.02£0.095 0.89%0.23

1
E




All codes were in MATLAB 6.0 and simulations were run on a PC machine with
Pentium 4 processor and CPU at 1.5 MHz. The higher-order statistics of the
source signals are presented in Table 1. The sources for the MATLAB codes are
indicated in Table 2, whereas the optimal contrast functions and the sum of the
individual negentropies for each agorithm are presented in Table 3. The
separation performance of the algorithms under test is resumed in Table 4, where
the indexes of the retrieved estimates correspond to the input data sequence.

Table 4. Indexes of performance and the retrieval sequence of the source signals.

Algorithms ~ SIR[dB] CTE E, E,

FastICA 171+351 065x012  Y6:Y3:Y5.Y2.Y1:Ya Y3 ¥Y5.Y2:Y1:Ya:Ye
BS 122472 112+033 Y6:Y3:¥5.¥Y2.Y1:Ya Y3 Y5 Y2.Y1:Ya:Ye
ACY 135+386 090*041 Ys:Y3:¥5:¥Y2,Y1:Ya Y3 Y5 Y2:¥1:Ya:Ye
EAS 7.02£530 2301139  Vy,Va,Ys.Yo.VaoYs  Yar¥s:Y:¥iiYaoYe
Pearson 793+x288 214*x174  Y6:¥3:¥Y5:Y2:¥a Y1 Y3 Y5 Y2.Y1:Ya:Ye
EGLD 821+375 210+156 VYe.Ya:Ys:Y2:Y1:Ya Y3 Ys¥aiY1.YaiYe

CONCLUSIONS

According to our simulations with six artificially generated time series the best
ICA agorithm in terms of convergence, computational requirements, and
parameters to be tuned is the FP FastiCA with symmetric orthogonalization and
exponential nonlinearity. Its stabilized version converges always to a definite
subspace of meaningful components even if the statistical independence is weak.
Though the BS and ACY algorithms are theoretically optimal in terms of mutua
information, their computational cost is higher whereas the results are similar with
the FP. Moreover, like all neural unsupervised algorithms, both BS and ACY
algorithms are heavily dependent on the learning rates and their convergence is
quite slow. The Pearson and EGLD algorithms employing the ML principle
separate a relative wide class of nongaussian source signals of large interest, even
skewed distributions with zero kurtosis. However, Pearson system's ability is to
model distributions that are close to normal distribution constrains its applications
since it has no particular advantages for modeling distributions far from normality.
As both estimators for parameters and score function are simple rational functions
both Pearson-ICA and EGLD algorithms are computationally fast. However, the
error margins are sensibly larger than in the case of FP, BS and ACY agorithms.
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