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Abstract: A novel technique, the Delay Vector Variance method, which provides model-
independent characterisation of time series in terms of their predictability is introduced and 
applied in a biomedical context. The merits of the procedure are demonstrated in a mode 
segmentation context on a set of long nonstationary physiological signals, obtained from 
subjects undergoing different sleep and wake stages. It is shown that the features extracted 
remain consistent within and across subjects. Next, the presence of nonlinearity associated 
with the different modes is investigated. A comparison with other measures supports the 
obtained results, namely that the signals show a higher degree of nonlinearity during wake 
than during sleep stages. 
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Introduction 

The recent progress in mathematical modelling and the increasing availability 
of computational resources have initiated the resolution of problems of high com-
plexity, involving high degrees of nonlinearity and nonstationarity. Too often, 
overly complex models are used to address these problems, resulting in weak gen-
eralisation ability and poor training performance. For this reason, the assessment 
of the signal's multimodality and the nature of these modes in terms of required 
model order and model nonlinearity, should precede the development of data 
processing or prediction systems [4]. 

The method proposed here draws upon the ‘Delay Vector Variance’ (DVV) 
method [2]. It characterises the signal in terms of its predictability, and achieves 
this in a model-independent manner which is closely related to the dynamical 
structure of the signal. The method is computationally and conceptually appealing. 
Its simplicity enables an incremental calculation, allowing for on-line signal proc-
essing applications. 



The application discussed in this paper is concerned with the analysis of non-
stationary physiological signals recorded from subjects undergoing different sleep 
stages. Currently, the most successful approaches towards this problem employ 
Hidden Markov Models [1, 3]. Since the sleeping patterns (i.e., the transitions 
from one stage to another) are very similar across subjects, these approaches can 
achieve good results without the need to directly grasp the dynamics of the signal 
modes. The proposed DVV method on the other hand, is strictly data-driven and 
yields excellent results, without exploiting temporal information such as state 
transition probabilities. This is a strong indication that the features extracted are 
closely related to the underlying dynamics of the system. 

Biomedical Time Series Used 

To illustrate the method, a set of biomedical signals obtained from subjects during dif-
ferent wake and sleep stages is used. The set contains recordings of three successive naps 
for five different subjects. For each nap a manual labelling assigned by a medical expert is 
available. The labels segment the data into different wake and sleep classes. These data sets 
are publicly available1 and have been used before in the context of mode segmentation [3]. 
The analyses are limited to the respiration (RES) and electro-encephalogram (EEG) signals 
of the first two subjects. 

The Delay Vector Variance Method 

A time series is first transformed into a set of delay vectors (DVs) of a given 
embedding dimension m, x(k) = [xk-m1, …, xk-1]. The next sample, xk, is referred to 
as the target of the DV. The proposed DVV method examines the mean target 
variance of all sets Ωk, generated by grouping the DVs that are within a certain 
distance to x(k). To make the results comparable over different embedding dimen-
sions as well as across different dynamical ranges of the time series, the distance 
threshold is varied in a standardized manner. For a given embedding dimension, 
the proposed ‘Delay Vector Variance’ method can be summarised as follows [2]: 

 
• The mean, µd, and standard deviation, σd, are computed over a discrete set of 

all pairwise distances between DVs, ||x(i) - x(j)|| (i ≠ j); 
• The sets Ωk are generated such that Ωk = {x(i) | ||x(k) - x(i)|| ≤ d}, i.e., sets 

which consist of all DVs that are within a certain uniformly spaced distance d 
from x(k), taken from the interval [µd - ndσd ; µd + ndσd], where nd is a parame-
ter controlling the span over which to perform the DVV analysis; 

                                                           
1 http://www.first.gmd.de/persons/Kohlmorgen.Jens/publications.html 



• For every2 set Ωk, the variance of the corresponding targets, σk2, is computed3. 
The average over all sets Ωk, normalised by the variance of the time series, σx2, 
yields the measure of unpredictability, σ*2: 
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An example of a typical ‘DVV plot’ is shown in Figure 1. Small target vari-
ances for small spans (left hand side of Figure 1) are an indication of a strong de-
terministic component (high predictability). For large spans, the curve smoothly 
converges to unity, since all DVs belong to the same universal set and therefore 
the variance of the corresponding targets will be equal to the variance of the time 
series. 

 

 
Fig. 1. Example DVV plot 

To cope with nonstationarity, DVVs are calculated on short, overlapping win-
dows that are slided over the signal one sample at a time. 

Mode Segmentation 

The goal of the proposed mode segmentation procedure is to identify the sleep 
stages, labelled by a medical expert. In the following, the analysis is limited to the 
three respiration signals of patients 1 and 2. Since these signals are very noisy and 
contain many outliers, a pre-processing step is first performed. Categories labelled 
as artifacts are removed and DVVs are calculated in such a way that the windows 
contain only a single mode. Next, the on-line version of the algorithm is used to 
extract DVV plots from the resulting signals4. Since the extracted features are 
high-dimensional and still contain redundancy, a dimensionality reduction using 
the Principal Component Analysis (PCA) is applied before proceeding to the seg-
mentation. 

                                                           
2 To improve robustness, only sets containing at least 30 DVs are taken into consideration. 
3 The reasoning is that, for a stationary signal, similar DVs should have similar targets. 
4 A window length of 400 samples, embedding dimension 4 and a span of 3 standard devia-

tions were used in the DVV analyses. 



Table 1. Classification accuracies obtained while testing within-subject generalisation 

signal accuracy (%) 
train test subject 1 subject 2 
1 2 86 82 
1 3 93 69 
2 1 76 68 
2 3 87 74 
3 1 79 70 
3 2 92 87 
mean 86 75 

 
Using a standard multi-layer perceptron5, the data is segmented from the ex-

tracted features into a wake and a sleep mode. A first set of analyses examines the 
subject-dependent generalization performance of the network. One signal of a par-
ticular subject is used to train the network that is subsequently used to segment a 
signal, recorded during a different nap of the same subject. To prevent the network 
from overfitting the data, cross-validation (early stopping) is used. Table 1 con-
tains the classification accuracies for the three signals of both subjects. The high 
accuracies clearly indicate that DVV extracts features that remain consistent over 
different sleeps of the same subject. A subsequent analysis investigates whether 
these features remain consistent over different subjects as well by using all DVV 
plots from one subject to classify the DVV plots of the other subject. This proce-
dure results in classification accuracies of 64 % when training on subject 1 and 
testing on subject 2, and 74 % when training on subject 2 and testing on subject 1. 
Such a high accuracy is remarkable given the fact that medical experts need dif-
ferent signals (EEG, EOG, etc.) to correctly identify sleep stages. In the following, 
the DVV method is used to further examine the nature of the signals during sleep 
and wake stages. 

Nonlinearity Analysis 

To help clarify the differences observed during sleep and wake stages, the pro-
posed characterisation method is applied to investigate the degree of nonlinearity 
present in the signals. Although the different procedures explained in this section 
consistently indicated strong nonlinearity in the respiration signals during both 
wake and sleep stages, no significant differences were found between the stages. 
For this reason, the analyses in the remainder of this section focus on the EEG 
signals only. For subject 1, three EEG signals are available. In order not to intro-
duce any artifacts or spurious correlations, the windows belong strictly to one 
class and do not overlap. This results in a data set containing 133 and 166 signal 
windows belonging to respectively the sleep and wake class. 

                                                           
5 In all simulations, a network containing one hidden layer (consisting of 2 neurons) and 

initialised with different random seeds was used. 



 

 
Fig. 2. Histograms of the rankings obtained with C3, REV and DVV on the sets of wake 
and sleep signals. All rank indices have been translated into probabilities 

It is plausible to assume that a higher cognitive awareness and the larger num-
ber of processes that exert an influence on the signal during awakeness manifests 
itself in a higher degree of signal nonlinearity during wake than during sleep 
stages. This hypothesis is investigated using DVV and validated with two well-
known measures of nonlinearity: the third-order autocovariance (C3) and the 
asymmetry due to time reversal (REV) [7]. All three measures provide a charac-
terisation of the time series. By comparing these measures to those calculated on 
linearised versions, ‘surrogates’, of the original signals, an assessment of the de-
gree of nonlinearity can be made [6]. A rank test is used to establish whether or 
not the null hypothesis of linearity can be rejected. Unlike C3 and REV, DVV 
provides a range of values. Single measures are obtained by computing the dis-
tances, for all surrogates and the original signal, between their respective DVV 
plot and an average DVV plot (averaged over all surrogates). Figure 2 contains the 
binned rank indices for all windows and for all three measures6. The larger amount 
of rejections on wake signals as compared to sleep signals in C3 and REV, is al-
ready a strong indication that the signals contain a higher degree of nonlinearity 
during wake stages. Using the DVV analysis, nearly all windows reject the null 
hypothesis of linearity. This result is in line with previous nonlinearity analyses, 
performed on EEG signals [5]. 

To obtain more quantitative results, a statistical test is performed on the meas-
ures themselves. The measures calculated on the original signal provide a direct 
indication of nonlinearity. To allow for inter-signal comparisons, these measures 
are first normalised by the spread of the values obtained on the surrogates. Next, a 
non-parametric statistical test, the Wilcoxon rank sum test, is used to investigate 
the null hypothesis of identical distributions. The following p-values are obtained: 
4.5 . 10-6 for C3, 0.025 for REV and 0.0058 for DVV. All three measures thus 
consistently reject the null hypothesis at the 0.05 level of significance. For this 
subject, the working hypothesis that the EEG signals exhibit higher nonlinearity 
during wake than sleep is validated. 

                                                           
6 The rankings of the two-sided tests (C3 and REV) have been rearranged so that the right-

most bin represents the rejection of the null hypothesis. 



Conclusions 

It has been demonstrated that the proposed method for time series characterisa-
tion, the ‘Delay Vector Variance’ method, is able to extract features, related to the 
predictability of the respiration signals, that allow for a subject-independent seg-
mentation into wake and sleep stages. In a subsequent study, these features were 
used to examine the difference in degree of nonlinearity of EEG signals. The re-
sults obtained (higher degree of nonlinearity during wake as opposed to sleep) are 
in line with those obtained using established nonlinearity measures. 
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