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Abstract. The paper is an overview of the most frequently used neural network algo-
rithms for implementing Independent Component Analysis (ICA). The performance of 
six structurally different algorithms was ranked in blind separation of independent artifi-
cially generated signals using the stationary linear ICA model. Ranking of the estimated 
components was also carried out and compared among different ICA approaches. All 
algorithms were run with different contrast functions, which were optimally selected on 
the basis of maximizing the sum of individual negentropies of the network outputs or 
minimizing their mutual information. Both subgaussian and supergaussian one-
dimensional time series were employed throughout the numerical simulations. 
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1 Introduction 

In many areas like data analysis, signal processing, and neural networks, a common task is to 

find an adequate representation of multivariate data for subsequent processing and interpretation. 

The transformed variables are expected to be the underlying components that optimally describe the 

essential structure of data and to reveal some physical causes involved in the process of data genera-

tion. In neural computation this task belongs to unsupervised learning, since the representation is 

only learned from data without any kind of external control. 

Linear transforms are often envisaged to accomplish this task due to their computational and 

conceptual simplicity. In its full generality, ICA amounts almost to the complex problem of blind 

model identification on the basis of minimal suppositions. ICA has emerged as an extension of a 

linear transform called Principal Component Analysis (PCA), which has been developed some years 

ago in context with Blind Source Separation (BSS) in Digital Signal Processing (DSP) and array 

processing [1]. The ICA problem is solved on the basis of optimizing certain measures of departure 

from gaussianity, which leads to a numerical optimization problem. We restricted our study to the 
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linear ICA model, which means that the (unknown) transform from the sources to the observed data 

and the pseudoinverse transform for estimating the sources from the data are both linear.  

2 ICA Model  

The statistical principles of the ICA problem are discussed in many seminal papers, but fundamental 

contributions are due to Comon [1] and Cardoso [2]. Our linear model considered hereafter assumes 

( ) ( )∈t,t nx    ÑN, and ( )∈ts ÑM three random vectors with zero mean and finite covariance, with the 

components of ( )ts  being statistically independent, whereas A is a rectangular constant full column 

rank MN ×  matrix with at least as many rows as columns ( MN ≥ ): 

( ) ( ) ( ) ( ) ( )ttsttt i

M

1i
i nanAsx +=+= ∑

=

           (1) 

where ( )ts , ( )tx , ( )tn , and { }M21, a,...,aaA =  are the sources, the data, the (unknown) noise, and 

the mixing matrix, respectively (Fig. 1). The sample index (e.g. time or point) t is assumed to take 

discrete values T,...,2,1t = . The variables (time series) are rows in ( )ts , ( )tx  and ( )tn , so that ( )ts , 

( )tx  and ( )tn  are column vectors at any t. Mixing is supposed to be instantaneous, so there is no 

time delay between the (latent) source variable ( )tsi  mixing into an observable (data) variable 

( )tx j . Within this framework, the ICA problem can be formulated as follows: given T realizations 

of ( )tx , estimate both the matrix A and the corresponding realizations of ( )ts . In BSS the task is to 

find the waveforms ( ){ }tsi  of the sources knowing only the mixtures ( ){ }tx j . 

 

Figure 1. Mixing and separating unknown source signals. 

 
There are several limitations to solving this problem. If no suppositions are made about the 

noise (which is generally the case), it cannot be introduced in the model but included in the signals, 

hence the noise-free ICA model can be written in the form:  

( ) ( ) ( ) ii

M

1i

tstt aAsx   ∑
=

==          (2) 
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where the columns M,...,2,1ii =  , a  of the mixing matrix A are the basis vectors (mixture coeffi-

cients) of ICA. Next limitation refers to the sizes of the different vectors. The size of ( )ts  (usually 

unknown) should not be greater than the size of data ( )tx , otherwise the problem becomes under-

determined. If the size of ( )tx  is greater than the size of ( )ts  (e.g. there are more sensors than 

sources), the problem is over-determined and the extra data can be used for reducing noise [3]. This 

is accomplished by projecting the input data ( )tx  into its M-dimensional signal subspace using for 

example PCA whitening [4]. In any case, each source signal ( ) M,...,2,1itsi =  ,  is assumed in our 

model to be a stationary zero-mean stochastic process and only one of them is allowed to have a 

gaussian distribution. 

Adaptive source separation consists in updating a NM × separating matrix ( )tB , without re-

sorting to any information about the spatial mixing matrix A, so that the vector  

( ) ( ) ( )ttt xBy  =            (3) 

becomes an estimate ( ) ( )tˆt sy =  of the original independent source signals ( )ts ; hence the terminol-

ogy "source separation". This is in contrast with "standard" array processing and beamforming tech-

niques where the columns of A or their dependence on the location of the sources is assumed to be 

known. In neural implementations, ( )ty  is the output vector of the network, and the matrix ( )tB  is 

the total weight matrix between the input and the output layers. The estimate ( )tŝi  of the i-th source 

signal may appear in any component ( )ty j  of ( )ty . The basic indeterminacy of the linear ICA 

model is due to the fact that any product ( )t sA ′′  satisfies the same condition: 

( ) ( ) ( ) ( )tttt T11 sAsPP? ?AAsx ′′=== −−         (4) 

for any permutation matrix P and any diagonal scaling matrix ? , that is, the ICA model can be re-

solved up to the product of a permutation and a diagonal matrix. This is true for the overall trans-

formation matrix ( ) ABQ  t=  as well, because without prior information on the amplitude of the 

source signals nor on the matrix A, the scale of each source signal is unobservable. The permutation 

indeterminacy stems from the immateriality of labeling the source signals. In order to partly lift up 

this ambiguity, in several ICA algorithms the amplitude of the estimates ( )ty j  are typically centered 

(zero mean) and scaled to have unit variance (whitened). 

2.1 DATA PREPROCESSING 

As a prerequisite to apply an ICA method, some algorithms require data preprocessing to 

some extent. As ICA deals with higher-order statistics it is justified to normalize in some sense the 
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first- and second-order moments. The effect is that the solution is divided in two parts dealing with 

dependencies in the first two moments, e.g. the whitening or sphering matrix ( )tV , and the depend-

encies in higher-order statistics, e.g. the orthogonal separating matrix ( )tW  in the whitened space. 

If we assume zero-mean observed data ( )tx , then by whitening we get a vector ( ) ( ) ( )ttt xVv  =  with 

decorrelated components, that is, { } Ivv =TE . The subsequent linear transform defined by ( )tW  

yields the solution by a rotation ( ) ( ) ( )ttt vWy  = , which is the relationship between the whitening 

and the output layer of the network. The total separation matrix between the input and the output 

layer becomes: 

( ) ( ) ( )ttt VWB   =            (5) 

In the standard stationary case, the whitening and the orthogonal separating matrices con-

verge to some constant values during learning. The same model can nevertheless be used in nonsta-

tionary situations by keeping these matrices time-varying [5]. Standard PCA is often used for 

whitening because information can be optimally compressed in the mean-square error sense and 

filter possible noise out [4]. The PCA whitening matrix is given by  

T21 EDV −=             (6) 

where { }TT E xxEDE =  is the eigenvector decomposition of the covariance matrix of the (zero-

mean) data x, implying that D is a MM ×  diagonal matrix containing the eigenvalues, and E an 

orthogonal MN ×  matrix having the eigenvectors as columns. The appropriate orthogonal trans-

form W can be sought by means of (i) heuristic independence conditions, (ii) optimizing some in-

formation-theoretic criteria, or (iii) optimizing some suitable contrast functions, in such a way that 

to come out with as independent as possible outputs.  

The core of each algorithm contains the update (learning) rule and its associated optimized 

criterion. These two items differentiate the neural algorithms, which are actually family of algo-

rithms parameterized by the nonquadratic nonlinearity used. For the large class of ICA adaptive 

algorithms the update rule is given as ( )tW∆ , which leads to the update equation for ( )tW  and/or 

( )tB : 

( ) ( ) ( )tt1t WWW ∆+=+           (7) 

As for instance, a simple neural algorithm for adaptive learning of the whitening matrix ( )tV  has 

the form [6]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )ttttttt1t T VvvIVVVV −+=∆+=+  µ       (8) 

where the (positive) parameter ( )tµ  sets the learning rate. 
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There are many methods for estimating the ICA model, which are differentiated by the way 

the source independence hypothesis is formulated and subsequently exploited. Their common fea-

ture is nevertheless some form of higher-order statistics, which specifically means information not 

contained in the covariance matrix of the observed (zero-mean) data. Therefore, ICA algorithms are 

linear with respect to data processing but are generally nonlinear in the learning phase. Optimizing 

some implicit forms of nongaussianity, all ICA approaches come up with different approximations 

of statistical independence of the estimated components. 

3 Neural Network Structures for ICA Algorithms 

Feedforward network structures are intensively used in source separation, but recurrent neu-

ral network structures have also been considered in solving the BSS problem [7]-[9]. Theoretically, 

they may exhibit certain advantages in hardware implementation [7]. Some feedforward networks 

containing several subsequent separation layers have been also reported [10]. It is claimed that they 

are able to separate sources in difficult cases (weak sources or ill-conditioned problems) provided 

that the data vectors ( )tx  do not contain noise and obey the ICA model above [6]. 

Let us consider the complete ICA model (1) and rewrite the estimated expansion as follows: 

( ) ( ) ( ) ( ) ( )ttˆttˆt nxnyAx ′+=′+=           (9) 

where the MN ×  matrix Â  denotes the estimate of the ICA basis matrix A, and ( )tn′  is the noise 

term. The N inputs of the network (Fig. 2) are the components of the vector ( )tx  at discrete values 

of the sample index t and its hidden layer contains M units. The ICA model can be implemented in 

two consecutive stages [4]: 

1. Learn a NM ×  separating matrix B for which the components of Bxy =  are as independent 

as possible according to some criterion; 

2. Learn a MN ×  weight matrix Â  that minimizes the mean-square error 

( ){ } ( ) ( )




 −=′

22 tˆtEtE yAxn  with respect to Â . 

 If the network is used for solving the BSS problem, then the basis vectors of ICA are of no 

interest and the last layer is consequently omitted. If data are sphered, then an extra layer is needed 

(Fig. 2). The first layer accomplishes ( ) ( )tt Vxv = , where the NM ×  matrix V is the whitening ma-

trix. In the case of MN >  the matrix V simultaneously reduces the dimension of the data vector 

( )tx . Then the source independent components are separated ( ) ( )tt Wvy =  by the orthogonal matrix 

W that the network should learn. 
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Figure 2. The architecture of a general feedforward neural network performing blind source separa-
tion and providing the basis vectors of ICA as columns of the estimated mixing matrix Â . 

 

Feedback connections are needed during the learning phase, but once the training is over, the 

network becomes purely feedforward if data are stationary. In most of the cases NM = , so that no 

data compression takes place in the hidden layer. The linear ICA model (1) enforces linear input-

output mappings after the learning process, yet nonlinearities must be used during learning the sepa-

rating matrix B or W in order to introduce the higher-order statistics into computations. 

4 Algorithms for ICA 

Apart from the estimation principle of ICA, an algorithm is needed for implementing the 

necessary computations. Since nonquadratic functions are generally involved by the estimation 

methods, numerical algorithms are needed, which are quite computationally demanding. The current 

algorithms for ICA can loosely be classified in two categories. One category contains adaptive algo-

rithms generally based on stochastic gradient methods and implemented in neural networks [11], 

[8], [12], [13], [14], [15], [16]. Adaptive algorithms may also be based either on optimization of 

cumulant-based contrast functions [8], [12], [13], or on "estimating equations" involving nonlinear 

distortions of the output ( )ty  [8], [17]. This class of algorithms exhibits slow convergence and their 

convergence depends crucially on the correct choice of the learning rate parameters.  

The other category relies on batch computation minimizing or maximizing some relevant 

criterion functions [1], [18], [19]. Their main drawback is that generally they imply complex matrix 

or tensorial operations. Neuromorphic block technique algorithms based on 2nd- and 4th-order 

cumulants were also proposed [20], [21], [22], [23], or likelihood approach [24]. Note that if the 
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source signals are temporally correlated, then the spatial blind deconvolution (separation) may be 

based on 2nd-order statistics only [25], [26], and separation of gaussian sources is possible.  

We selected hereafter a number of algorithms aiming to highlight various facets of adaptive 

neural network approach to solve the ICA problem in the framework of BSS. 

4.1 HÉRAULT-JUTTEN (HJ) ALGORITHM 

In this pioneering neural separation algorithm [8], the separation matrix B is sought in the 

form  

( ) 1−+= SIB            (10) 

and the off-diagonal elements of S are updated following the rule: 

( ) ( ) ( ) ( )( ) ( )( )Ttttt1t yhygSS   µ+=+         (11) 

Here the diagonal elements of S are zero, while ( )( ) ( )( ){ }tygt i=yg  is a column vector, 

( )( ) ( )( ){ }tyht i
T =yh  is a row vector with N,...,2,1i = , and the learning parameter ( ) 0t >µ . Various 

different odd functions ( )yg  and ( )yh  were used, such as y , 3y , ( )ysign  and ( )ytanh . The neural 

implementation of the HJ algorithm may be performed using either feedback or feedforward type 

architectures [12]. The HJ algorithm initially used for the separation of 2 sources only, was subse-

quently improved and extended for convolutive mixtures (time delays) [27]. 

4.2 EASI (PSF) ALGORITHM  

The Parameter Free Separators (PFS) algorithm was introduced by Laheld and Cardoso 

[28] and concluded with the Equivariant Adaptive Separation via Independence (EASI) algorithm 

[29], which is an example of a nonlinear decorrelation method. The principle behind equivariance 

emerged from the group theory: when a transformation on the data is equivalent to the transforma-

tion of the parameter, the notion of equivariance is of relevance. Since both mixing and separating 

transforms are invertible linear transforms, the properties of the parameters can be seen through the 

whole process. Though justified as an adaptive signal processing algorithm, it can be used as a 

learning algorithm of a nonlinear PCA type network.  

The general update rule of the separating matrix equates to: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )[ ] ( )ttttttttt1t TTT BygyhyhygIyyBB −+−−=+  λ    (12) 

with ( )tλ  setting the learning rate. If ( ) yyg =  and ( ) ( )ytanhyh =  for subgaussian sources, and 

( ) ( )ytanhyg =  and ( ) yyh =  for supergaussian sources, then separation is accomplished without 
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extra stabilization. Adding on-line estimation of the kurtosis endows the EASI algorithm with the 

ability to handle simultaneously both sub- and supergaussian sources. The EISA algorithm provides 

uniform performance, that is, its performance does not depend on the mixing matrix [28]. 

4.3 THE BIGRADIENT ALGORITHM 

The bigradient algorithm was introduced by Wang, Karhunen, and Oja [30]. The update rule 

for the orthogonal separation matrix W is given by:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ]WWIWygvWW TT ttttttt1t −++=+     γµ     (13) 

The learning parameters are such as ( )tµ  can be either positive or negative and ( )tγ  has practically 

the values 0.5 or 1. The first update term ( ) ( ) ( )( )Tttt ygv   µ  is a nonlinear hebbian term, whereas the 

second term ( ) ( ) ( )[ ]WWIW Tttt −  γ keeps the weight matrix ( )tW  approximately orthonormal. The 

main quality of this algorithm is its flexibility, namely, with minor changes can perform separation 

of both subgaussain and supergaussian sources, but also to standard PCA and MCA (Minor Compo-

nent Analysis). In terms of neural implementation, the update rule (13) can be modified easily so 

that the weight vectors of the neurons, which are columns in the matrix ( )tW , are computed se-

quentially in a hierarchic order [6]. 

4.4 FIXED-POINT (FP) ALGORITHMS  

Fixed-point algorithms are searching the ICA solution by minimizing mutual information 

among the estimated components [18]. Mutual information is defined by means of approximating 

the (differential) entropy using the maximum entropy principle. Ultimately, the task reduces to sepa-

rately maximizing the negentropy of each component, which is a rather delicate problem. Conver-

gence is at least quadratic.  

The FastICA learning rule finds a direction (i.e. a unit vector w) in such a way that the pro-

jection of xwT  maximizes a particular contrast function ( )wGJ : 

( ) ( ){ } ( ){ }[ ]2T
G GEGEJ ?xww −=         (14) 

where the variance of xwT  must here be constrained to unity. The following optimal choices of the 

function G were proposed by Hyvärinen [31]: 

( ) ( ) ( ) ( ) ( ) ( ) 4uuG2uaexpa1uGuacoshloga1uG 4
3

2
222111 =−−==      ,      ,     (15) 

where 1a2a1 21 ≅≤≤   ,  are some suitable constants. The expectations are in practice replaced 

with their sample means, hence the FP algorithm is not a truly neural adaptive algorithm. The learn-
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ing rule consists of a decorrelation method, e.g. a deflation scheme based o a Gram-Schmidt-like 

decorrelation, which amounts to estimating the components one by one. Assume that we have esti-

mated p vectors (independent components) p21 ,...,, www , we run the one-unit FP algorithm for 

1p+w  and after every iteration step substract from 1p+w  the projections jj
T

1p www + , p,...,2,1j =  of 

the previously estimated p vectors, and the renormalize 1p+w : 

1. jj

p

1j

T
1p1p1p wwwww ∑

=
+++ −=   2. 

1p
T

1p

1p
1p

++

+
+ =

ww

w
w    (16) 

There is available also a stabilized version of the FP algorithm developed in order to ameliorate the 

rather uncertain convergence of the Newton method on which the FP algorithm is based. Symmetric 

decorrelation is also possible when there are no particular directions envisaged. Although the algo-

rithm was motivated as a short-cut method to make neural learning for kurtosis minimization and 

maximization faster, its convergence was proved independent of the neural algorithm and the well-

known results on the connection between ICA and kurtosis [18]. 

4.5 INFOMAX (BS) ALGORITHM 

An important class of algorithms is based on maximization of network entropy (infomax) 

[11], which is, under some conditions, equivalent to the maximum likelihood (ML) approach. The 

basic idea of infomax is to match the slope of the nonlinear transfer function g with the input prob-

ability density function, which in one dimensionally may be written as ( ) ( )dxxfw;xgy
x

x  ∫
∞−

≅=  

The Bell Sejnowski (BS) nonlinear information maximization algorithm performs online 

stochastic gradient ascent in the mutual information between outputs and inputs of a network. By 

minimizing the mutual information between its outputs, the network factorizes the input into inde-

pendent components. Considering a network with the input vector x, a weight matrix W, and a 

monotonically transformed output vector ( )0g wWxy += , then the resulting learning rule for the 

weights and bias-weight, respectively, are [4]: 

[ ] ( )T1T 2y1xWW −+∝∆
−

,      y1w 20 −∝∆       (17) 

In the case of bounded variables, the interplay between the antihebbian term ( )T2y1x −  and the 

antidecay term [ ] 1T −
W  produces an output pdf that is close to the flat constant distribution, which 

corresponds to the maximum entropy distribution. 
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Originally, the nonlinearity proposed for the algorithm was the typical sigmoidal function 

used in neural networks: 

( ) ( )yexp1
1

yg
−+

=           (18) 

but later on, in its extended version, a better performing form was introduced: 

( ) ( )ytanhyyg ±=           (19) 

The updated informax ICA algorithm has been refined with the natural gradient feature of 

Amari, Cichocki & Yang [15], the extended-ICA algorithm of Lee, Girolami & Sejnowski [32], and 

PCA dimension reduction.  

4.6 NATURAL GRADIENT ALGORITHM (ACY ALGORITHM) 

Amari, Cichocki and Yang [15] altered the BS algorithm by using the natural gradient in-

stead of the stochastic gradient reducing the complexity of computations and significantly improv-

ing the speed of convergence. The on-line ACY algorithm minimizes the statistical dependency 

among outputs of the network, which is measured by their average mutual information. The Gram-

Charlier expansion instead of the Edgeworth expansion was employed in evaluating the marginal 

entropy for the estimation of the MI. The dependency can be alternatively expressed by the KL di-

vergence between the joint and the product of the marginal distributions of the outputs, which is 

simply related with the average MI. The KL divergence supplementary has some invariant proper-

ties from the differential-geometrical point of view [26]. The minimization of KL divergence comes 

out with an ICA algorithm for estimating the separating matrix in the whitened space: 

( ) ( ) ( )( ) ( ) ( )( )[ ] ( )tttttgt T WxWxWIW     −∝∆       (20) 

Two different functions were used instead of the theoretical contrast function proposed by the au-

thors [15] because of too high powers involved that cause in practice a strong dependence on only a 

few large values: 

( )
( )





=
componentsn subgaussia             , 

componentsian supergauss     , 
3y

ytanh
yg       (21) 

The algorithm has the property of equivariance and can be easily implemented on a neural network-

like model. 

4.7 MAXIMUM LIKELIHOOD (ML) 

Maximizing the likelihood can be seen as minimizing the KL divergence between the hy-

pothesized distribution of the sources and the empirical distribution of the output. Two algorithms 
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performing ICA for source separation, which combine the techniques of fixed nonlinear contrast 

functions and the ML approach, were included in our tests. They are called the Pearson-system ICA 

algorithm [33] and the Extended Generalized Lambda Distribution (EGLD) algorithm [34]. In the 

ML approach the source distributions are estimated by a parametric model and the score function of 

the hypothesized source distribution is used as a contrast function which is subject to optimization 

by a suitable algorithm. Many different approaches to solving the ICA model are essentially equiva-

lent, in the sense that they conclude with the same iterative algorithm [17]. 

The Pearson system is a parametric family of distributions that may be used to model a wide 

class of source distributions that may be symmetric or asymmetric, covering a large range of differ-

ent values of kurtosis and skewness. The benefit of using Pearson system consists in its ability to 

separate sources with skewed distributions and the same kurtosis as the normal distribution. The 

score function of the Pearson system is: 

( )
ybybb

ay
y

210 ++
−

−=ϕ          (22) 

where 10 b,b,a    and 2b  are the parameters of the distribution, which may be estimated by the method 

of moments [35]. The algorithm optimizing this criterion could be any suitable ICA algorithm using 

ML contrasts like the natural gradient [36], or the relative gradient [2] algorithm with the update 

rule: 

( ) ( ) ( )[ ] ( )tIt1t T WyyWW ϕη −+=+         (23) 

where ( )yϕ  is the vector of score functions and η  is the learning rate, or, as in our experiments, the 

fixed-point algorithm [18] with the update rule in the form: 

( ) ( ) ( ){ } ( ){ }[ ] ( )tyydiagEEt1t ii
T WyyDWW ϕϕ −+=+      (24) 

where ( ){ } ( ){ }( )[ ]iii yEyyE1diag ϕϕ ′−=D .  

The extended generalized lambda distribution is used as in Pearson-system based method for 

modeling the source distributions in a ML approach to ICA. EGLD modeling provides a useful con-

nection between practical estimator and theoretical measure of independence [34]. EGLD is a large 

family of distributions covering the whole space of the third and fourth moments, having extensive 

use in fitting empirical data and in artificial generation of various distributions [37], [38]. The latest 

extension due to Karian and Dudewicz [39] is a combination of Generalized Lambda Distribution 

(GLD) and Generalized Beta Distribution (GBD). The GLD is defined by the inverse distribution 

function: 
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( ) ( )
2

1
1

43 p1p
pF

λ
λ

λλ −−
+=−         (25) 

where 1p0 ≤≤  and 321 ,, λλλ  and 4λ  are the parameters of the distribution. In practice, it is not 

possible to present the density or distribution functions of GLD in an analytical general form; fortu-

nately, observations are easily generated from GLD employing the inverse distribution function 

[34]. On the other hand, the GBD is characterized by the density function: 

( ) ( )( ) ( ) 434 xxCxf 211
1

2
ββββ ββββ −+−= ++−       (26) 

on the interval [ ]211 , βββ +  and zero elsewhere, whereas C is a constant. 

The estimation of the parameters for both GLD and GBD is done using the method of mo-

ments, where the four first sample moments are calculated from the data. However, due to the intri-

cacy of the computational process, the parameters for both GLD and GBD are tabulated as functions 

of the third and fourth moments [40], assuming variables of zero mean and unit variance. The un-

derlying source distributions are estimated through the marginal distributions by fitting them to 

EGLD family using the method of moments. When the EGLD is fitted to data, the choice between 

GLD and GBD is made based on the values of the third and fourth moments. The score function 

( )yϕ  of the EGLD stands as an ICA contrast function for maximization. The optimizing algorithm 

can be any adequate algorithm where ML contrasts are utilized. We preferred the FastICA algorithm 

with the convergence criterion set to the symmetric mode, e.g. 000001.0=ε . 

5 Basis Vectors of ICA 

The basis vectors M21 a,...,a,a  (mixture coefficients) of the linear ICA model provide in 

many cases a more meaningful characterization of data than the classical principal components. If 

the weight matrix ( )tB  converges to a separating solution B, then the estimates of the basis vectors 

{ }ia  are the columns of the pseudoinverse ( ) 1TTˆ −
= BBBA , which reduces to 1ˆ −= BA  if B is a 

square matrix (e.g. NM = ). This method is nevertheless unsuited for neural implementation due to 

the required matrix inversion. 

A simple stochastic gradient algorithm was developed [41] for neural estimation of basis 

vectors in independent component analysis: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )Ttttˆtttˆ1tˆ yyAxAA    −+=+ µ        (27) 
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based on the minimization of the mean-square representation error ( ) ( )




 −

2
tˆtE yAx  with a posi-

tive rate of learning ( ) 0t >µ . As before, the columns of the matrix ( )tÂ  are the estimates of the 

basis vectors of the linear ICA model after convergence. 

6. Assessment of ICA Algorithms 

6.1 STATISTICAL INDEPENDENCE 

If the multidimensional random variable ∈x ÑN has a probability density function ( )xxf , 

then the independence of the N scalar random variables ix , N,...,2,1i = , that is, the components of 

x having the probability density functions ( )ix xf
i

, respectively, is defined by the factorization: 

( ) ( )∏
=

=
N

1i
ix xff

i
xx           (28) 

The factorization of ( )xxf  appears as a way of splitting a multivariate function into univariate func-

tions, which can subsequently be analyzed and processed separately. In many problems the inde-

pendence is invoked aiming to enforce computational tractability. 

A meaningful treatment of the concept of independence relies on information theory, which 

means deriving the criterion for statistical independence from the statistical properties of data [42]. 

Entropy is such a criterion based on the amount of information contained in some occurrences of a 

random variable. Entropy does not exist for continuous random variables, but differential entropy 

does. In the case of a multidimensional continuous random variable x with density ( )xxf , the dif-

ferential entropy is defined as: 

( ) ( ) ( ) uuux xx dflogfH   ∫−=          (29) 

Differential entropy is invariant to orthogonal transforms and it is upper bound, but is no longer 

invariant to invertible transforms as entropy is in the case of discrete random variables. Therefore, 

two other concepts are employed as contrast functions that are endowed with the invariance prop-

erty, namely negentropy and mutual information.  

First, recall that the Kullback-Leibler divergence of two random variables v and z, with 

densities ( )uvf  and ( )uzf , respectively, is given by  

( ) ( ) ( )( ) ( ) ( )
( ) u
u
u

uuuzv
z

v

u
vzv d

f
f

logff|fK|K  ∫==       (30) 

Though not really a distance since it is not symmetric, it turns out that the Kullback-Leibler diver-

gence behaves as a statistical measure of the "distance" between two distributions. In this sense, we 
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will call it KL distance between two random vectors. KL distance is always nonnegative and takes 

the value 0 iff the distributions are identical.  

For a multidimensional continuous random variable x with the density ( )xxf , to which is as-

sociated a gaussian variable Gx  with the same covariance matrix like x, the negentropy is defined 

as: 

( ) ( ) ( ) ( ) ( )
( ) ( )GG |Kd

f
f

logfHHJ
G

xxu
u

u
uxxx

x

x
x ==−= ∫       (31) 

Negentropy is always nonnegative, reaches its minimum for a gaussian random variable, and is in-

variant to linear invertible transforms. In the above formula, the negentropy appears as a measure of 

the distance from normality of the density ( )xxf , which is expressed in the form of KL distance. 

Accordingly, the negentropy ( )xJ  can be used as a measure of departure from gaussianity of a mul-

tivariate continuous random variable x. 

The average mutual information is related with entropy, and in the case of two variables it 

measures the amount of information conveyed by an occurrence of one variable about the other: 

( ) ( ) ( ) ( )y,xHyHxHy,xI −+=         (32) 

where ( )y,xH  is the joint entropy of the variables. For the general case of N (scalar) random vari-

ables ix , N,...,2,1i = the mutual information is 

( ) ( ) ( ) ( ) ( )
( ) 










==−= ∏∏∫∑ i

ii
iN21 x|xKd

xf
f

logfHxHx,...,x,xI
i

x
x

xx
x

x
x     (33) 

It comes out that mutual information is symmetric, zero iff the factorization of the joint density 

( )xxf  holds, that is, when the components are independent, and it is strictly positive otherwise. The 

independence condition can now be formulated using the information concepts. Comparing the 

form of negentropy as in (31) and the mutual information (33), it comes out that if a gaussian multi-

variate is a reasonable approximation to the product of the marginal densities, then negentropy is a 

means to estimate the mutual information and, implicitly, a measure of independence.  

If we consider now the basic linear ICA model Bxy = , the mutual information between es-

timated independent components N,...,2,1i,yi =   becomes: 

( ) ( ) ( ) ( ) ( ) ( )Bxy detlogHyHHyHy,...,y,yI
N

1i
i

N

1i
iN21 −−=−= ∑∑

==

    (34) 



 15

If the scalar random variables N,...,2,1iyi =  ,  are constrained to be uncorrelated, then 

{ } { } TTT EE BxxByyI == , hence ( ) { }( )( )TT detEdetdet1det BxxBI   == , which implies that Bdet  

must be constant.  

( ) ( ) constantyHy,...,y,yI
N

1i
iN21 += ∑

=

       (35) 

where the constant that does not depend on B [44]. Moreover, since the iy 's are assumed of unit 

variance, entropy and negentropy differ only by a constant and the sign. It comes out the fundamen-

tal relationship between negentropy and mutual information: 

( ) ( ) constantyJy,...,y,yI
N

1i
iN21 +−= ∑

=

       (36) 

It explicitly means that minimizing pairwise the MI of the random variables N21 y,...,y,y  equates to 

maximizing the sum of their individual negentropies ( ) ( ){ }iyi yflogEyH
i

 −= . But because a gaus-

sian density has maximal (differential) entropy, this means minimizing the gaussianities of the ran-

dom variables N,...,2,1i,yi =  .  

Note that, if instead of the estimated densities ( )iy yf
i

 we plug in the true densities, say 

( )i
*
y yf

i
, of the sources N,...,2,1i,si =  , then the objective function in (35) may be put in the form: 

( ) ( ){ }[ ] constantyflogEy,...,y,yI
N

1i
i

*
yN21 i

+−= ∑
=

       (37) 

This is the negative of the log-likelihood (for large sample size), thus minimizing MI is equivalent 

to Maximum Likelihood.  

The approximations for negentropy introduced by Hyvärinen [31] for a scalar random vari-

able y with zero mean, unit variance, and p functions iG  are: 

( ) ( ){ } ( ){ }[ ]2
Gii

p

1i
i yGEyGEkyJ −≈ ∑

=

        (38) 

where iG  are practically any nonquadratic functions, ik  are some positive constants, and Gy  is a 

gaussian variable with zero mean and unit variance as y. When using only two nonlinear functions, 

e.g. an odd one, ( )2yexpyG 2
1 −= , which measures the asymmetry, and an even one, yG2 = , 

which measures the sparsity/bimodality of an 1D nongaussian distribution [31], the approximation 

of entropy becomes simpler: 

( ) ( ) ( ){ }( ) ( ){ } ( ){ }( )[ ]2
G222

2
11G yGEyGEkyGEkyHyH −+−≈     (39) 
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Based on some heuristic grounds, the simplified forms of two practical implementations of (39) 

used in our experimental evaluations were the following: 

( ) ( ) ( ){ }[ ] { }[ ]
( ) ( ) ( ){ }[ ] ( ){ }[ ] 



 −−+−−=





 −+−−=

22b
2

22
1Gb

2a
2

22
1Ga

212yexpEk2yexpyEkyHyH

2yEk2yexpyEkyHyH π
   (40) 

with ( ) ( ) ( )    ,  , 2731624k621k93836k b
2

a
21 −=−=−= π and where the expression 

( ) ( )( )π2log1
2
1

yH G +=  is the entropy of a standardized scalar gaussian variable. We based our 

ranking on the strict monotonicity of negentropy (38) as function of the gaussian character of the 

estimated independent components. Though the absolute values of negentropy are eventually ques-

tionable and not entirely reliable, the monotonicity of negentropy is able to relatively rank the 

performance of various algorithms. 

6.2 KNOWN SOURCES 

When the original source components are known (such as in the case of artificially generated 

data, the accuracy of separating power of the independent components of an ICA algorithm can be 

measured by means of various indexes. We will assume hereafter NM = . One index used as a 

global figure of merit for the separation performance may be defined as signal-to-interference ratio: 

( )
( )∑

= −
−=

N

1i
2

ii
T
i

2
i

10
QmaxQQ

Qmax
log10

N
1

SIR       (dB)      (41) 

where BAQ =  is the overall transforming matrix of the source components, iQ  is the i-th column 

of Q, ( )iQmax  is the maximum element of iQ , and N is the number of source signals. The higher 

SIR is, the better the separation performance of the algorithm. A second index, CTE, which was 

used to measure the accuracy of retrieving the independent components, is the distance between the 

overall transforming matrix Q and an ideal permutation matrix, which is interpreted as the cross-

talking error [45]: 

∑ ∑∑ ∑
= == =














−+













−=

N

1j

N

1i j

ij
N

1i

N

1j i

ij 1
Qmax

Q
1

Qmax

Q
CTE       (42) 

Above, ijQ  is the ij-th element of Q, iQmax  is the maximum absolute valued element of the row i 

in Q, and jQmax  is the maximum absolute valued element of the column j in Q. A permutation 

matrix is defined so that on each of its rows and columns, only one of the elements equals to unity 
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while all the other elements are zero. It means that CTE attains its minimum value zero for an exact 

permutation matrix.  

6.3 RANKING THE ESTIMATES 

Ranking the estimated independent components was another criterion used for assessing the 

reliability of ICA algorithms. Friedman [46] proposed a robust structural measure to arrange the 

ICA basis vectors. The idea is to first sphere the data and then to map them into the interval [ ]10  ,  

with the gaussian cumulative density function ( )vΦ . For T  realizations of a (scalar) random vari-

able ( )tyk  the proposed scheme leads to the index for the k-th estimated independent component: 

( )
2T

1t
k1 1

T
t2

yyE
t∑

=














 −−= σ          (43) 

where { }tσ  are the indexes of the ordered ( ){ }tyk  in such a way that ( ) ( )jyiy kk ≤  iff ji σσ ≤ . The 

higher ( )k1 yE  is, the more structural information contains the k-th estimated independent compo-

nent  

It is meaningful and useful to rank order the components by the extent of their contribution 

to the original data. The contribution of the estimated component ( )tyk  may be expressed in two 

alternative ways [47]. It can be estimated by the root mean square (RMS) of the data set recon-

structed solely from this component yAx ˆ=  in which y has only one nonzero row corresponding to 

the appropriate component. Alternatively, it can be regarded as the RMS error introduced per data 

point when the data x are reconstructed without this component (e.g. y has only one zero row corre-

sponding to the appropriate component): 

( ) ( )
21

N

1j

2T

1t

k
jtk2 C

NT
1

yE












⋅
= ∑∑

= =

        (44) 

where k
jtC  is the element of an TN ×  matrix computed from the outer product of the k-th independ-

ent component and the k-th column of Â , that is kt
1

jk
k
jt YBC −= . The higher ( )k2 yE  is, the higher the 

contribution of the component ( )tyk  to the observed data. 

7. Results and Discussion 

In our simulations, we used 6 different artificially generated time series of 512 samples each, 

both subgaussian and supergaussian (Fig. 3). Their analytical expressions in Tables 1 and 2 are in 

MATLAB language. 
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Figure 3. Artificially generated signals (left) and their histograms (right). Both subgaussian (up) and 
supergaussian (bottom) signal distributions were considered as displayed by their histograms and 
characterized by their kurtosis. 

Table 1. The analytical form and the 3-rd and 4-th order cumulants of the subgaussian sources. 

Source signal Skewness Kurtosis 

Modulated sinusoid: ( ) ( ) ( )8tcos149tsin21S ∗∗=  024637.0  551312.0−  

Square waves: ( ) ( )( )( )292cos9t12sinsign2S ∗+∗=  015638.0  996568.1−  

Saw-tooth: ( ) ( )( ) 231779,trem3S −=  101021.0  191073.1−  

 

Table 2. The analytical form and the 3-rd and 4-th order cumulants of the supergaussian sources. 

Source signal Skewness Kurtosis 

Impulsive curve: ( ) ( )( )( )591123,trem4S −=  011980.0−  353211.2  

Exponential decay: ( ) ( ) ( )t37cos121texp55S ∗∗−∗=  055131.0  410776.3  

Spiky noise: ( ) ( )( )( ) ( )( )T,1randlog125.T,1rand6S ∗−∗<=  464295.0  228476.2  
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The signals were mixed by a fixed square matrix A, with randomly generated elements 

within the range [ ]1,1  −  for proper scaling, and having ( ) 1det >A  for nonsingularity: 

 



























−−
−−−−−

−−−
−−−−−

−−−
−−

=

   0999.0    1134.0   8457.0    4146.0      8700.0   6294.0  
6620.03270.0      3829.0  2333.0    5057.0   9669.0
7593.0    6943.0   1253.0    6972.0    6150.0    5700.0  
5906.0 1628.0  8373.0   5370.0   8278.0    6531.0  
7672.0     0538.0     7509.0     6365.0   7068.0    4558.0
0659.0 4422.0     3988.0     8715.0      2549.0   2658.0   

       
    

    
     

    
      

A  

 

The algorithms used in our simulations were partly downloaded directly from their original 

sites (Table 3), some of which were modified, and partly implemented in MATLAB 6.0. All codes 

for generated data and statistical processing were parts or modified versions of MATLAB codes. 

Table 3. The origin of code sources for the neurally implemented ICA algorithms. 

Algorithms Type Source 

FastICA original  http://www.cis.hut.fi/projects/ica/fastica/ 

BS modified http://www.cnl.salk.edu/~tewon/ica_cnl.html 

ACY personal as described in [12] 

EASI modified http://sig.enst.fr/~cardoso/guidesepsou.html 

Pearson-ICA modified http://wooster.hut.fi/statsp/papers/Pearson_ICA.zip 

EGLD-ICA modified http://wooster.hut.fi/statsp/papers/EGLD_ICA.zip 

 

The simulations were carried out in two steps. First, we used SIR, CTE, and the sum of indi-

vidual negentropies of the estimated components for each algorithm under test in order to determine 

its optimal performing nonlinearity and/or contrast function. For the sum of the individual output 

negentropies we listed both aJ  and bJ  values corresponding to the different expressions aH  and 

bH  which approximated the entropy. The results were averaged over 120 full sessions with 5 

nonlinearities per session and per algorithm. The best choices are presented in Table 4.  

Once the best performing contrast function was determined for each algorithm [48], the 

separation accuracy of the source components was comparatively measured using SIR and CTE, 

whereas the components ranking was carried out on the basis of the indexes 1E  and 2E  among all 
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algorithms. The results presented in Table 5 are the means and standard deviations corresponding to 

500 full runs. The hierarchy corresponds to the decreasing order of overall performance. 

Table 4. The optimal performing nonliniarity for each algorithm under study. 

Sum of negentropies 
Algorithms Nonlinearities and score functions 

aJ  bJ  

FastICA ( ) ( )2yexpyyg 2−=   1.67 ±0.028 1.25 ±0.012 

BS-Infomax ( ) ( )ytanhyyg ±=  1.0 ±0.23 0.8 ±0.35 

ACY ( ) ( )ytanhyyg −=  0.8 ±0.50 0.6 ±0.19 

EASI ( ) ( )ytanhyg −=  0.5 ±0.48 0.4 ±0.35 

Pearson-ICA ( )
ybybb

ay
y

210 ++
−

−=ϕ
 

0.96 ±0.075 0.8 ±0.66 

EGLD-ICA ( ) ( )
2

1
1

43 p1p
pF

λ
λ

λλ −−
+=−

 
1.02 ±0.095 0.89 ±0.23 

 

Table 5. The assessment of ICA algorithms and ranking of the estimated components. Both the 

mean values and the standard deviations are indicated for the indexes SIR and CTE. The indexing of 

the components corresponds to their counterparts in the input sequence. 

Algorithms SIR [dB] CTE  1E  2E  

FastICA 17.1 ±3.51 0.65 ±0.12 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

BS 12.2 ±4.72 1.12 ±0.33 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

ACY 13.5 ±3.86 0.90 ±0.41 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

EASI 7.02 ±5.30 2.30 ±1.39 142536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

Pearson-ICA 7.93 ±2.88 2.14 ±1.74 142536 y,y,y,y,y,y  641253 y,y,y,y,y,y  

EGLD-ICA 8.21 ±3.75 2.10 ±1.56 412536 y,y,y,y,y,y  641253 y,y,y,y,y,y  
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6 Conclusions 

In recent years, new learning algorithms for solving the ICA problem have been proposed, 

yet their theoretical properties, range of optimal applicability, and comparative assessment are still 

largely unexplored. We limited our study to the most popular algorithms for the time being.  

To date the best ICA algorithm in terms of convergence, computational requirements, and 

parameters to be tuned is the FP FastICA with symmetric orthogonalization and exponential nonlin-

earity. Its stabilized version converges always to a definite subspace of meaningful components 

even if the statistical independence is weak. Though the BS and ACY algorithms are optimal in 

terms of mutual information, their computational cost is higher whereas the results are similar with 

the FP. Moreover, like all neural unsupervised algorithms, both BS and ACY algorithms are heavily 

dependent on the learning rates and their convergence is quite slow. The Pearson and EGLD algo-

rithms employing the ML principle separate a relative wide class of nongaussian source signals of 

large interest, even skewed distributions with zero kurtosis. However, Pearson system's ability is to 

model distributions that are close to normal distribution constrains its applications since it has no 

particular advantages for modeling distributions far from normality. As both estimators for parame-

ters and score function are simple rational functions both Pearson-ICA and EGLD algorithms are 

computationally fast. However, the error margins are sensibly larger than in the case of FP, BS and 

ACY algorithms.  

ICA as a means for performing BSS is a rapidly emerging new application domain of unsu-

pervised neural learning. Theoretically, ICA should be useful in quite all applications as standard 

PCA and even beyond. First, observe that the assumption of mutual independence between sources 

is a statistically strong hypothesis but very plausible in real world, particularly in the case of physi-

cally separated sources. This makes any ICA performing algorithm extremely attractive for data 

analysis. Then, the model and the neural algorithms analyzed are referring to stationary linear noise-

less ICA model. Challenging directions of further research are at least oriented towards modeling 

the effect of noise, nonstationarity, and nonlinearity in ICA.  
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