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Abstract— Eye movements have the goal of optimizing visual
perception, therefore the investigation of eye motion strategies
play an important role in the design of humanoid robot eye
systems. Saccades in humans and primates is a significant class
of ocular motions, which obey the so called Listing’s Law, which
constrains the admissible eye’s angular velocities and ensure
zero torsion during motion. In this paper we present a model
of the eye plant proving that Listing’s Law implementation is
strongly related with the geometry of the eye and its actuation
system (extraocular muscles). The proposed model has been used
to provide the guidelines for the design of a tendon driven
humanoid robot eye. Experimental tests, presented in this paper,
validate the model by performing a quantitative comparison
of the performance of the robot eye with physiological data
measured in humans and primates during saccades.

I. INTRODUCTION

Eye movements have the goal of optimizing visual percep-

tion, [1]. The way the eyes change their orientation may affect

our perception of the world. In turn, it is widely accepted

that visual feedback, as well as other sensory feedback (e.g.

from vestibular system), play a major role in stimulating eye

movements. Therefore, it is not surprising that to different

vision strategies correspond significantly different types of eye

motions.

Saccades represent a basic and important class of eye

movements, [2], where the goal is that of reaching as fast

as possible a target direction of fixation. During saccades the

eye orientation is determined by a basic principle known as

Listing’s Law, which establishes the amount of eye torsion for

each direction of fixation. Listing’s Law has been formulated

in the mid of the 19th century, but has been experimentally

verified on humans and primates only during the last 20 years,

[3]– [6]. Furthermore, Listing’s Law has been recently found

to be valid also during other types of eye movements such as

smooth pursuit, [7].

A formal statement of Listing’s Law can be formulated as

follows.

Listing’s Law: There exists a specific eye orientation with

respect to the head, called primary position. During saccades

any physiological eye orientation, with respect to the primary
position, can be described by a unit quaternion q whose (unit)

rotation axis, v, always belongs to a head fixed plane, L
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Fig. 1. Geometry of Listing compatible rotations: the finite rotation axis v
must always belong to a head fixed plane L. Without loss of generality h3

define the direction of fixation at the primary position.

(Listing plane). The normal to plane L is the eye’s direction

of fixation at the primary position.

Figure 1 describes the geometry of a eye rotation compatible

with Listing’s Law. Vectors (h1,h2,h3) and (e1, e2, e3)
represent head and eye fixed reference frames respectively.

Any physiological eye orientation can be obtained by rotating

the eye by a finite angle θ, about an axis v always belonging

to a head fixed plane L. Without loss of generality, in the

following h3 will be assumed orthogonal to L, and define the

direction of fixation at the primary position.

During saccades both θ and v are time functions con-

veniently described by a unit quaternion, [8]. However, as

discussed in [8] and [9], in order to ensure that v ∈ L at

any time, the eye’s angular velocity ω, must belong to a plane

Pω , passing through v, and whose normal forms an angle of
θ
2 with the direction of fixation at the primary position, see

figure 2. This property, directly implied by Listing’s Law, is

usually called Half Angle Rule, [10].

During a generic saccade the plane Pω is rotating with

respect to both the head and the eye due to its dependency

from v and θ. This fact poses important questions related to
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Fig. 2. Half angle rule geometry. The eye’s angular velocity must belong to
the plane Pω passing through axis v.

the control mechanisms required to implement the Listing’s
Law, also in view of the fact that there is no evidence of

sensors in the eye plant capable to detect how Pω is oriented.

Whether Listing’s Law is implemented in humans and

primates on a mechanical basis or requires an active feedback

(neural) control action has been disputed among neurophys-

iologists in the past few years. The evidence of soft tissue

within the orbit, called soft pulleys, [11] – [15], constraining

the extra ocular muscles (EOMs), has suggested that the

mechanics of the eye plant could have a significant role in the

implementation of half angle rule and Listing’s Law, [16]–

[19], although counterexamples have been presented in the

literature, [20], [21].

A model fully explaining the role of the geometry of the eye

plant for implementing the Listing’s Law has been proposed

in [8] and [9]. In this paper the model is shortly discussed

and guidelines to the design of a tendon driven robot eye are

provided. These guidelines have been used to implement a

prototype of humanoid robot eye, [22].

The major contribution of this paper is to show through

simulative and experimental results that the proposed model

is accurate enough to describe the eye movements observed in

humans and primates. Furthermore, it is shown that the robot

implementation has performances close to those predicted by

the model. Finally, it is shown that the experimental tests

performed on the robot prototype produce results comparable

with the data measured on humans and primates during

saccadic motions.

The structure of the paper is the following. In section II a

model of the eye plant is presented, and some of its relevant

geometric and kinematic properties are discussed in section

III, including some guidelines used for the design of a tendon

driven robot eye. In section IV, some important characteristics

of the proposed models are exploited through simulation and

experiments, and a comparison with data obtained from actual

measured saccades is performed.

II. EYE MODEL

The eye in humans has an almost spherical shape and is

actuated by six extra-ocular muscles (EOMs), [23]. Each EOM

has an insertion point (IP) on the sclera, and is connected with

the bottom of the orbit at the other end. Accordingly with the

rationale proposed in [16] and [24], only the four rectii EOMs

play a significant role during saccadic movements.

The motion of EOMs within the orbit is constrained by

connective tissue, known as soft pulleys, whose physiologic

role during ocular movements has been widely discussed,

[11]– [15].

In [25] a complete 3D model of the eye plant including

a non linear dynamics description of the EOMs has been

proposed. This model has been extended in [26] and [27],

including also a description of the soft pulleys as elastic

suspensions (springs). However, this model require that the

elastic suspensions perform particular movements in order to

ensure that Listing’s Law is fulfilled.

The model proposed in [8], and [9], and described in the

following, is slightly simpler than the previous ones. In fact, it

does not include EOMs dynamics since it can be shown that

it has no role in implementing the Listing’s Law; moreover, it

models soft pulleys as fixed point-wise pulleys. It will be clear

in the next section that this model despite its simplicity can

be also used as a guideline for the design of humanoid tendon

driven robot eyes.

The eye-ball is assumed to be modelled as a homogeneous

sphere of radius R, having 3 rotational degrees of freedom
(DOFs) about its center. EOMs are modelled as non-elastic

thin wires, [16], connected to pulling force generators, [26].

Starting from the IPs placed on the eye-ball, the EOMs are

routed through head fixed point-wise pulleys (PPs), emulating

the soft-pulley tissue. The PPs are located on the rear of the

eye-ball, and it will be shown that appropriate placement of

the PPs and of the IPs has a fundamental role to implement

the Listing’s Law on a purely mechanical basis.

Let O be the eye’s center, then the position of the PPs can

be described by vectors pi, while, at the primary position IPs

can be described by vectors ci assuming also that |ci| = R.

When the eye is rotated about a generic axis v by an angle

θ the position of the IPs can be expressed as:

ri = R(v, θ) ci ∀ i = 1 . . . 4. (1)

where R(v, θ) is the rotation operator from the eye to the head

coordinate systems.

Each EOM is assumed to follow the shortest path from each

IP to the corresponding pulley, [13]; then, the path of the each

EOM, for any eye orientation, belongs to the plane defined by

vectors ri and pi. Therefore, the torque applied to the eye by

the pulling action τi ≥ 0 of each EOM is given by:

mi = τi
ri × pi

|ri × pi| ∀ i = 1 . . . 4. (2)

From expression (2), it is clear that |pi| does not affect the

direction or the magnitude of mi, so we shall assume in

the following that |pi| = |ci|. Instead, the orientation of the
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Fig. 3. Relative position of pulleys and insertion points when the eye is in
the primary position.

vectors pi, called principal directions (PDs), are extremely

important.

In fact, it is assumed that pi and ci are symmetric with

respect to the plane L which implies:

(v · ci) = (v · pi) ∀ i = 1 . . . 4,∀ v ∈ L; (3)

and finally it is assumed that IPs are symmetric with respect

to the fixation axis, i.e.:

(h3 · ci) = (h3 · cj) ∀ i, j = 1 . . . 4, (4)

and

(c3 − c1) · (c4 − c2) = 0. (5)

Figure 3 shows the relative position of IPs and PPs when

the eye is in its primary position.

III. MODEL PROPERTIES

In this section we review the most relevant properties of the

proposed model.

First, it is possible to show that for any eye orientation

compatible with Listing’s Law all the torques mi produced

by the four rectii EOMs belong to a common plane passing

through the finite rotation axis v ∈ L (see [8] for proof).

Theorem 1: Let v ∈ L be the finite rotation axis for a

generic eye orientation, then there exists a plane M passing

through v such that

mi ∈ M ∀ i = 1 . . . 4
A second important result is that the relative position of the

IPs and PPs, at any Listing compatible eye’s orientation, form

a set of parallel vectors, as stated by the following theorem

(see [8] for proof).

Theorem 2: Let v ∈ L be the finite rotation axis for a

generic eye orientation, then:

(ri − pi) × (rj − pj) = 0 ∀ i, j = 1 . . . 4
Finally, it is possible to show that planes M and Pω are

coincident (see [8] for proof).

h

h1

2

3

h

O

e3

nω
r

r

r

r
1

2

3

4

Fig. 4. When vector nω belongs to the convex hull of vectors ri then rectii
EOMs can generate any admissible torque on Pω .

Theorem 3: Let v ∈ L be the finite rotation axis for a

generic eye orientation, then:

mi ∈ Pω ∀ i = 1 . . . 4

Remark 1: Theorem (3) has in practice the following signif-

icant interpretation. For any Listing compatible eye orientation

any possible torque applied to the eye, and generated using

only the four rectii EOMs, must lay on plane Pω.

The problem now is to show, accordingly to formula (2),

when arbitrary torques mi ∈ Pω can be generated using only

pulling forces. Theorem 2 states that mi are all orthogonal to

a vector nω normal to plane Pω. Therefore, formula (2) can

be rewritten as:

τ = −nω × ( 4∑

i=1

γi ri
)

(6)

where γi = τi

|nω×ri| ≥ 0 take into account the actual EOMs

pulling forces. From formula (6), τ is orthogonal to a convex
linear combination of vectors ri. Then, it is possible to

generate any torque vector laying on plane Pω, as long as nω

belongs to the convex hull of vectors ri, as shown in figure (4).

Remark 2: The discussion above shows that the placement

of the IPs affects the range of admissible motions of the eye.

Accordingly with the previous discussion when the eye is

in its primary position any torque belonging to plane L can

be assigned. Assume now that, under the assumptions made

in section II, a simplified dynamic model of the eye could be

expressed as:

Iω̇ = τ (7)

where I is the inertia matrix of the eye, assumed to be

proportional to the identity matrix. Assume the eye at time

0 to be in the primary position, with zero angular velocity

(zero state). The EOMs can generate a resulting torque of the

153



Fig. 5. Complete stereoscopic robot system

form:

τ = vθ(t) (8)

where v ∈ L is a constant vector and θ(t) a scalar control

signal. Therefore, ω̇ and ω are parallel to v. Then, it is

possible to reach any Listing compatible orientation, and also,

during the rotation, the Half Angle Rule is satisfied.

Similar reasoning can be applied to control the eye ori-

entation to the primary position starting from any Listing
compatible orientation and zero angular velocity.

Remark 3: The geometric specifications provided in sec-

tion II and the properties described in this section provided

operational guidelines for the development of a tendon driven

robot eye (MAC-EYE), [22]. Figure (5) shows the complete

system including the embedded control electronics. Each eye
is actuated by four independent DC motors driving tendons

routed to the eye-ball. Embedded optical sensors provide

feedback to control the mechanical tension of the tendons.

The eye-ball is made of PTFE and is supported by a custom

made bearing. Sliding pulleys emulating the geometry of the

PPs discussed in the paper have been implemented, [22].

IV. SIMULATIONS AND EXPERIMENTAL TESTS

Further analysis, beyond the theoretical results presented in

the previous sections, has been carried out through simulative

and experimental tests performed on a prototype of tendon

driven robot eye, [22].

All the tests consisted of simulated (or experimental) con-

secutive saccadic motions (from a hundred for simulations

up to a thousand, for the robot tests). At the end of each

single saccade the quaternion q = (cos θ
2 ,vsin θ

2 ) describing

the eye rotation has been measured. The vector part of the

quaternion has been then projected on a head fixed reference

frame (h1,h2,h3) (being h3 orthogonal to Listing’s plane),

and scaled as follows:

qH = 180
π h1 · v sin θ

2

qV = 180
π h2 · v sin θ

2

qT = 180
π h3 · v sin θ

2

As suggested in [5], since within the oculomotor range sin θ
2 ≈

θ
2 then qT can be used to measure the amount of torsion of
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Fig. 6. Plane (qT , qH). Each dot represents a single eye orientation. All
the points correspond to zero torsion eye orientations as specified by Listing’s
Law.

the eye (in degrees); while, qH and qV represent the amount

of vertical and horizontal rotation.

A. Simulations

The eye model has been implemented using Simulink ac-

cordingly with the geometric guidelines described in the pre-

vious sections and correspond to the model used for the design

of the robot eye prototype, [22]. In particular the eye ball is

a sphere with a mass of 50 [g], and diameter of 38.1[mm].
The IPs form an angle of 55 [deg], corresponding to the

configuration of EOMs in the human eye. On the basis of the

conditions stated using formula (6), this configuration ensures

an oculomotor range larger than 45 [deg] in all directions.

Principal directions are established accordingly. Viscoelastic

actuation forces (linear spring-damper mechanism) have been

used to model the action of the EOMs. The rotation of the eye

is then obtained by changing the length the spring.

1) Nominal Model: the goal of this test has been to show

that the model obeys Listing’s Law for the geometry described

in section II. Figure 6 shows the plane (qT , qH) and it is clear

that all the saccades produce eye rotations compatible with

Listing’ Law, i.e. qT = 0.

2) Perturbed Model: the goal of this test has been to

measure the sensitivity of the model with respect to pertur-

bations of the parameters. As a matter of fact fixed PPs are

an idealization of the actual soft pulley tissue. In this case

a hundred saccadic movements uniformly distributed within

the range of rotation of the eye have been simulated. The

position of the four PPs has been randomly perturbed from

the principal directions by 2.5% with respect to the eye ball

diameter.

The effect of the perturbations is a thickening of the Listing
plane, but all the eye orientation are still distributed along

a plane. This fact is confirmed also by the physiological

evidence as discussed below.
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Fig. 7. Plane (qT , qH). Each dot represents a single eye orientation. Small
(random) perturbations in displacement of the PPs produce a thickening of
the Listing plane

B. Experimental Tests

The goal of the experimental tests has been that of evalu-

ating the performance of the MAC-EYE robot, in comparison

with the the model proposed in the previous sections, and more

important in comparison with the actual behavior of the eye

in humans as documented in the literature, [5].

Since the robot eye does not feature built-in rotation sensors,

an external custom-built measurement set-up has been used to

measure the eye rotations. A digital camera placed in front

of the eye acquires images and an automatic feature extractor

tracks a set of markers placed on the eye-ball, see figure 8.

At the beginning of each experiment the eye is placed in

its nominal primary position and a calibration of the external

camera is performed, [28]. After the i − th saccadic motion

Fig. 8. Image of the eye taken from the external camera used for rotation
measurements. The colored marks, placed on three different planes, are used
for the automatic tracking of the eye rotations.
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Fig. 9. Plane (qT , qH). Each dot represents a single eye orientation. The
actual eye orientations are distributed around the Listing plane. The thickness
of the distribution is about 5 [deg].

an image of the eye is taken and an automatic feature tracker

estimates the rotation vector vi and angle θi of the eye with

respect to the nominal primary position. The Listing plane is

then estimated by computing its normal unit vector nL defined

as:

nL = arg min
|n|=1

1
N

N∑

i=1

|n · vi|2 (9)

where N is the actual number of measurements. It is straight-

forward to show that nL is the unit eigenvector corresponding

to the minimum eigenvalue of the semi-positive definite ma-

trix:

VN =
1
N

N∑

i=1

vi · vi
T (10)

During each saccade the eye is driven by its four internal

motors. Each motor is commanded to pull (or release) the

corresponding tendon by an amount, computed on the basis

of the nominal model of the robot eye, and specified by the

desired eye rotation. Motors’ rotations and tendons’ tensions

are controlled by the robot embedded controller.

Figure 9 shows the typical behavior of the eye described

in the (qT , qH) plane. The test corresponds to one thousand

saccadic motions distributed within the whole oculomotor

range. It is evident that the eye orientations approximate

well the Listing’s Law. As a matter of fact the actual PPs

implemented in the robotic device are displaced away from

the principal directions about 2 [mm].
It is very interesting to compare the experimental data ob-

tained from the robot with those measured on human subjects.

In particular Tweed and Vilis, [5], have shown that in human

subjects Listing plane has a thickness of about 5 [deg], which

matches with the experimental data reported here. A typical

set of measurements obtained from a human subject is shown

in figure 10 (reprinted from [29]).
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Fig. 10. Typical distribution of eye orientations in the (qT , qV ) plane, from
[29]. The thickness of Listing plane is about 5 [deg].

V. CONCLUSIONS

In this paper we have investigated the possibility of emulat-

ing the actual saccadic motions implementing the Listing’s
Law on a mechanical basis. To this aim, a model of the

eye plant has been proposed. The model is characterized by

the relative position of the IPs on the eye-ball and of the

PPs required to properly route the EOMs. Simple geometric

conditions on these quantities allow to constrain the space of

the moments generated by the action of the EOMs to a single

plane coincident with plane Pω . This property allows to show

that any (reachable) Listing compatible eye orientation can be

reached from the primary position with a trajectory composed

by Listing compatible eye orientations.

Numerical simulations have validated the model. Further-

more, experimental tests have shown that the performances

of a tendon driven robot eye, designed accordingly with

the model specifications previously discussed, are actually

quantitatively corresponding to the experimental data obtained

measuring saccadic movements in human subjects.
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