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Abstract
Most computational models of coding are based on a generative model according to which
the feedback signal aims to reconstruct the visual scene as close as possible. We here explore
an alternative model of feedback. It is derived from studies of attention and thus, probably
more flexible with respect to attentive processing in higher brain areas. According to this
model, feedback implements a gain increase of the feedforward signal. We use a dynamic
model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward
and feedback weights. The weights converge to localized, oriented, and bandpass filters
similar as the ones found in V1. Due to presynaptic inhibition the model predicts the
organization of receptive fields within the feedforward pathway, whereas feedback primarily
serves to tune early visual processing according to the needs of the task.

Keywords: Natural scenes, network models, visual system, attention

Introduction

Visual perception is thought to be based on a hierarchy of visual processing,

where the complexity of the encoded feature properties grows with each level of

increasing hierarchy. Theories of coding address the intriguing question of the kind
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 of information encoded by the neurons. Since natural scenes are highly redundant,

the core idea is to find a code which reduces the redundancy of images. In

particular, efficient coding might be a fundamental constraint of visual processing

(Barlow 1961; Atick and Redlich 1990; Nadal and Parga 1994). Typically, linear or

approximately linear approaches are used to reduce the redundancy based on

second or higher order statistics. The principal component analysis (PCA),

independent component analysis (ICA), and independent factor analysis or sparse

coding (IFA) have been successfully used to learn a set of basis functions (Hancock

et al. 1992; Harpur and Prager 1996; Olshausen and Field 1996; Bell and Sejnowski

1997; van Hateren and van der Schaaf 1998). Especially ICA and IFA let the

receptive fields converge to edge-filters, which exhibit similar properties as V1 cells.

Despite this success there remain several open questions (Barlow 2001; Simoncelli

2003). From our point of view, one outstanding issue is the generalization of present

approaches to higher levels of visual processing. Yet, there are only a few attempts

to extend learning to model higher areas of visual processing (Rao and Ballard 1999;

Hoyer and Hyvärinen 2002; Karklin and Lewicki 2003). Most of the present

approaches are based on a linear generative model. Learning in this generative

model grounds in the objective to minimize the error between the actual image and

the predicted image (Olshausen and Field 1997; Hoyer 2003; Rehn and Sommer

2007), and typically only feedback connections are learned. In neural terms, the

generative approach is analogous to an analysis–synthesis loop in which the feedback

signal represents the predicted image. The residual image, the subtraction of the

predicted image from the input image, is processed forward and the activity in the

next (output) layer is relaxed to a stable, typically sparse representation. Explicit

iterative feedforward/feedback processing has been used to learn receptive fields

and, by enforcing a sparse representation, edge-filters emerge (Rao and Ballard

1999; Jehee et al. 2006).

However, the generative model approach appears to be difficult to reconcile with

the idea of attention. As this might not be critical for early visual processing, higher

brain areas tend to emphasize the behaviorally relevant aspects of the visual scene.

The activity in higher brain areas would hardly allow to reconstruct the whole visual

scene. Due to this potential limitation of the generative model approach, we started

with the objective that learning should be embedded in the attentional dynamics

of the network. This is inspired by the idea that attention is an emergent property of

interactions between brain areas (Hamker 2005, 2006). In this framework of

attention, predictive feedback implements a match enhancement (Grossberg 1980;

Hamker 2004). Thus, feedback enhances the sensitivity of a neuron towards its

input. This is an important difference to generative models, which use predictive

feedback to compute the residual error of the prediction and the present input.

While there are many studies of learning using the generative model, the match

enhancement model has not been used for learning. However, our work benefits

from several previous studies of Hebbian learning (von der Marlsburg 1973;

Sejnowski 1977; Oja 1982; Linsker 1986). We advanced a Hebbian learning

framework using presynaptic inhibition (Spratling and Johnson 2002). This

learning rule has shown superior properties compared to other Hebbian learning

frameworks on variations of the bar-learning task (Wiltschut et al. in preparation).

We demonstrate that Hebbian learning in the match enhancement model with

presynaptic inhibition not only leads to sparse representations and edge-like

250 F. H. Hamker & J. Wiltschut
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 receptive fields but also shows interesting coding properties such as the context

dependence of a neuron’s receptive field.

A model of Hebbian learning within a network for attentional processing

Architecture

Our model consists of two layers, whose neurons are bidirectionally connected with

each other by feedforward (W ) and feedback (A) weights (Figure 1). The image

Layer II

Layer I

r1
II

rj
II

ri
Ir1

I

aji

wij

ON

ON OFF

OFF

ri
On/Off

Figure 1. Our network consists of two layers. The neural dynamics implement a feedforward/
feedback system, where feedback strengthens the representation of the predicted features in
the input. If other top-down signals were available this network could be used to implement
feature-based attention. The on/off responses are determined from the input image.
The firing rate of these cells r

On=Off
i provides the input to layer I cells which are subject to

feedback control. The layer I cells represent by their activity rI
i the content of the visual scene

with an additional small increase in firing rate if the input matches the expectation from
layer II. Layer II is supposed to learn a more efficient representation of the visual content.
The feedforward wij and feedback weights aji are learnt simultaneously.

Hebbian learning of receptive fields 251
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 has been whitened/lowpass filtered (see ‘‘Methods’’) and separated into on/off

channels (depending on the sign of the pixel value after filtering) which yields the

input activity r
On=Off
i of layer I.

Layer II gets activated from layer I neurons, but dependent on the activity of other

layer II cells. The layer II cells feed back to layer I cells and increase their gain.

Due to the learning of the feedback weights, this feedback is predictive. The

feedback signal enhances the sensitivity of specific neurons in the previous layer and

thus leads to an ‘‘attentional’’ tuning.

Neural dynamics

We simulate the change in the firing rate of the cells with differential equations.

The activity of the model units and the weight of the connection between cells are

restricted to nonnegative values.

Layer I. The neurons in layer I are driven by the on- and off-cells (Figure 1).

Feedback from layer II implements a gain modulation (Bayerl and Neumann 2004;

Hamker 2004; Hamker 2005). A related approach has been used earlier to

dynamically link features (Eckhorn et al. 1990). There is no lateral competition

among the neurons in layer I, but they can receive a selective reentrant signal due to

the competitive dynamics in layer II. The firing rate rI
i of layer I cells is simulated by:

�
drI

i

dt
¼ r

On=Off
i : 1þ � �max

k
rI
k

� �þ
�
X

j

ajir
II
j

 !
� rI

i ð1Þ

i refers to the position of the neurons in the image space, �¼ 10 ms is the time

constant of the temporal dynamics, aji denotes the feedback weight from neuron j

of layer II to neuron i of the first layer and (x)þ¼max(x, 0). rI
i and rII

i denote the

strength of the firing rate for the corresponding neuron. The parameter (�¼ 1)

determines the influence of the feedback signal with respect to the activity in

the postsynaptic layer. Please refer to Yu et al. (2002) for a discussion about a

biophysical implementation of the maximum operation.

Layer II. Layer II neurons learn a combination of specific input features.

Their firing rates are determined by the weighted sum of the activity in layer I

and by pre-synaptic lateral inhibition (Spratling and Johnson 2002) to induce

competition among cells:

�
drII

j

dt
¼
X

i

wij r
I
i 1�max

k,k 6¼j

wik

maxm wmk

rII
k

maxn rII
n

� �� �þ" #
� rII

j ð2Þ

wij denotes the strength of the feedforward weight from neuron i of layer I to neuron

j of layer II. We investigated this neuronal dynamics earlier on the bar-learning

problem and observed advantageous properties in the overlap condition

Wiltschut et al. (in preparation). Overlap refers to the ability to learn the

discrimination of input patterns consisting of shared elements, e.g., the learning

252 F. H. Hamker & J. Wiltschut
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 of a representation of A and B, and one that encodes the joint occurrence of A and B

by a different set of neurons.

Basically, the gain of each connection from a neuron i in layer I to a neuron j

in layer II is selectively decreased if another neuron k includes the feature encoded

by neuron i in its representation and if neuron k is active. Both factors of the gain,

the weight and the firing rate, are normalized. The dynamic decrease of the gain

avoids inhibition just from the presence of other active cells but induces competition

if neurons are tuned to similar features (Figure 2). The effective weights we
ij that are

driving the activation of the second layer shown in Figure 9 are determined from the

constant weights wij combined with the corresponding pre-synaptic lateral

inhibition:

we
ij ¼ wij � 1�max

k,k 6¼j

wik

maxm wmk

rII
k

maxn rII
n

� �� �þ
ð3Þ

Note that the effective weights of a neuron differ with respect to the presented inputs.

Learning rules

The long-term potentiation (LTP) of the connections between neurons is

implemented via a Hebbian learning principle. As there are many possibilities on

how to constrain the weights from a permanent increase and to implement

long-term depression (LTD) we previously compared several algorithms

(Wiltschut et al. in preparation). These simulations with artificial data suggest

that the post/not-pre learning principle is particularly suitable for LTD. However,

on natural scenes we observed that the resulting receptive fields are more smooth, if

the feedback learning rule slightly differs from the feedforward one and implements

LTD only by the constraint to limit the overall weight resource. LTP requires

i

wij

wij wik

Layer I

Layer II

Figure 2. The concept of presynaptic inhibition (Spratling and Johnson 2002). The effective
feedforward connection wij from neuron i in layer I to neuron j in layer II depends on
the activity of other neurons k in layer II. If neuron k is strongly activated by the present input
it prevents other cells using the same input features for which it is tuned. Thus, the
presynaptic inhibition of neuron k to neuron j is input selective. The resulting dynamics is
much different from a winner-take-all competition where the inhibition is not selective, since
here several cells can be simultaneously activated if they are tuned to different aspects of the
present input.

Hebbian learning of receptive fields 253
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 an above-mean activation of both, pre- and post-synaptic activities, which is well

known as the covariance learning rule (Sejnowski 1977; Willshaw and Dayan 1990).

Specifically we used:

�l
dwij

dt
¼ rII

j � ~rII
� �þ

rI
i � ~rI

� �
� � rII

j � ~rII
� �þ

wij

� �
ð4Þ

�l
daji

dtl
¼ rI

i � ~rI
� �þ

rII
j � ~rII

� �
� � rI

i � ~rI
� �þ

aji

� �
ð5Þ

~r is the mean of the activation in a particular layer ðe:g:, ~rI ¼ ð1=NÞ
PN

i¼1 rI
i Þ and

�l¼ 250 ms the time constant for learning. The weights are prevented from getting

negative. � forces each post-synaptic cell to limit its recourses. It is primarily

dependent on the number of weights and an appropriate value can be

easily estimated from the stable solution of the ODE and the desired activation rII
j

given rI
i .

Methods

We applied the model to learn receptive fields from on/off channel responses to

natural scenes. In order to obtain the image data we used the software package

‘‘nnscpack’’ from Patrik Hoyer (http://www.cs.helsinki.fi/u/phoyer/code/nnscpack.

tar.gz), which in turn took the natural scenes from Bruno Olshausen’s ‘‘Sparsenet’’

software package (http://redwood.berkeley.edu/bruno/sparsenet). The image data

consists of 10 images (512� 512 pixels). To roughly simulate the characteristics

of retinal ganglion cells, each image has been filtered with a zero-phase whitening/

lowpass filter Rð f Þ ¼ f � expð�ð f =f0Þ
4
Þ with f0¼ 200 cycles/picture (Olshausen and

Field 1996). This filter attenuates low frequencies and boosts high frequencies to

obtain a roughly flat amplitude spectrum across spatial frequencies. In image space,

this filter has a circularly symmetric, center-surround (mexican hat) shape.

For every image the same number of randomly selected patches of 12� 12 pixels

has been taken and used for learning. We did not define a training set with a fixed

number of patches but randomly chose a patch for each trial. Each patch is divided

in two different channels (on/off) and each channel is normalized to unit mean

squared activation.

As the on/off channels consist of 12� 12 cells, we required 288 cells for our first

layer, i.e., 144 neurons obtain input from the on-, the others from the off-cells.

We used 288 cells in layer II to represent the input combinations. The feedforward

weights wij were initialized randomly with a mean �w ¼ 0:1. The feedback weights

were initialized with zero. An image patch is presented for 50 ms to let the dynamics

of the system converge to a stable state. After each trial both feedback and

feedforward synapses are learned according to the final firing rates of the cells.

To reveal the influence of some model assumptions, we ran several additional

simulations. First of all, we used a model without feedback connections. Second, we

investigated the influence of the nonnegativity constraint on the weights. A control

study with unconstrained weights was run for 230.000 cycles to reveal the influence

of the nonnegative constraint on the weights. Third, in order to investigate the

influence of � on the learning of the receptive field structure, we ran identical

254 F. H. Hamker & J. Wiltschut
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 simulations with respect to the sequence of randomly chosen values for the

initialization and the presentation of patches using three different values for �
(�¼10, �¼ 50, �¼ 100). Fourth, we tested the model with a learning rule that leads

to a less broad feedback projection:

�l
daji

dtl
¼ rI

i � ~rI
� �þ

rII
j � ~rII

� �
� � rI

i � ~rI
� �þ

aji

� �
ð6Þ

Compared to Equation 5 the feedback connection from a layer II to a layer I

neuron decreases if a layer II neuron fires below average. The learning rule of

Equation 6 constraints the feedback connections only to pairs which are

simultaneously active for most of the time, whereas the original one allows a

layer II cell to develop a more broad connectivity, since the penalty for

noncorrelated activity is lower.

To compare the learned weight kernels or the receptive fields with Gabor

functions, we fitted each with the following equation:

Gðx, y; x0, y0, �x, �y, f , �, Þ ¼ cosð2� � f � x̂�  Þ � exp �
x̂2

2�2
x

�
ŷ2

2�2
y

 !
ð7Þ

with x̂ ¼ ððx� x0Þ cosð�Þ þ ðy� y0Þ sinð�ÞÞ=12 and ŷ ¼ �ððx� x0Þ sinð�Þ þ
ðy� y0Þ cosð�ÞÞ=12. We used all 144 center positions for x0 and y0 which are

normalized to one, varied �x and �y from 0.01 to 0.3 also normalized to the

patchsize in steps of 0.01. f was varied between 0 and 3 cycles/patch in 30 steps.

For the orientation �, we used values between 0 and 2� in 30 steps and the phase

was varied between 0 and 3�=4 in steps of �=4. The best Gabor fit was determined

by the minimum of the sum of the squared difference between the normalized

Gabor and the normalized receptive field.

Results

We show the results after 400.000 presentations of patches (Figure 3). The

approximate shape of the kernels, however, is visible after about 70.000

presentations. The bottom-up and top-down weights converge to similar

profiles (mean sum-of-squares difference between normalized weights: 0.38,

0.9-Quantil¼ 0.52 and 0.1-Quantil¼ 0.28). This result is a consequence of the

learning rules (Equations 4 and 5). The learning rules are almost symmetric and

pick up the correlations in the firing rates across the layers. However, we observed

that the learning of the feedback weight has to be less competitive. It is advantageous

to induce no LTD if the presynaptic cell (layer II) fires below threshold and the

postsynaptic cell (layer I) fires above threshold (compare Equation 6). Although the

firing of the presynaptic cell cannot be the cause of the postsynaptic response, LTD

is not appropriate in this case since the layer II cell should participate in the

encoding of multiple patterns. Otherwise, more patches with weak orientation

tuning emerge. Most of the kernels are localized, oriented and bandpass, similar to

several earlier approaches using a generative model. We also obtain blob-like kernels

which appear absent in the classical sparse-coding model (Olshausen and Field

1996) and in ICA (Bell and Sejnowski 1997; van Hateren and van der Schaaf 1998),

Hebbian learning of receptive fields 255
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but see (Li and Atick 1994) who obtained blob-like cells based on efficient coding

and the additional constraint of object invariance.

To estimate the receptive field profile, including the whitening/lowpass filtering

stage, we convolved the whitening/lowpass filter with the learned weights, which

basically reduces the frequency but does not change the overall shape. The obtained

receptive fields are well fitted with Gabor functions (mean sum-of-squares

difference: 0.92, Q.9¼ 1.43 and Q.1¼ 0.43). Examples of the receptive field profile

and the respective Gabor fit are depicted in Figure 4A. The spatial frequency

(Figure 4A and B) is shifted to lower values compared to Sparsenet: (Olshausen and

Field 1997). Consistent with monkey V1 experimental data (Ringach 2002), our

model shows blob-like receptive fields but high frequency components are missing

in the model. Other nonnegative generative coding approaches also show a tendency

towards lower spatial frequencies (Hoyer 2003; Falconbridge et al. 2006). However,

nonnegativity alone, at least as far as the weights are concerned, does not explain

the absence of high frequencies. When we drop the nonnegativity constraint on the

weights, spatial frequency increases only slightly whereas the Gaussian envelopes get

much broader (Figure 5).

Although we do not explicitly enforce sparseness, the model converges to a sparse

representation showing an activity distribution that is peakier than Gaussian

(Figure 6). However, the degree of sparseness as measured by the kurtosis of the

distribution is quite low (Kno feedback¼ 19, Kfeedback¼ 8 as compared to Sparsenet

KSparsenet� 200 (Rehn and Sommer 2007)). Moreover, due to whitening, the input

into the model is already sparse. Control simulations with 1152 cells in layer II did

not show fundamental differences in the degree of sparseness. We compared the

feedforward weights of the model with and without feedback and found no major

difference between both. The lower kurtosis of the activity distribution in the model

with feedback appears surprising, since feedback could reinforce a sparse

representation due to positive feedback. However, since many cells in layer II

are active, the feedback induced by the feedforward activation is quite broad and

Figure 3. The learned feedforward and feedback connections of 225 example neurons after
400.000 image presentations.

256 F. H. Hamker & J. Wiltschut
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allows many cells in layer I to increase in activity. Thus, an increase in sparseness

would only be expected if the layer II cells strongly compete with each other.

A fundamentally different picture with respect to sparseness emerges from dropping

the nonnegativity constraint on the weights. Due to the feedforward inhibition the

responses get very sparse (Kneg. weights¼ 956).

The value of � in the learning rule has no fundamental influence on the shape

of the receptive field (Figure 7). For the larger weights a change in � implements a

scaling of all weights with a roughly constant factor.

In order to shed more light on the influence of feedback on learning, we

compared the progress of learning the feedforward weights W with and without

feedback from layer II to layer I (Figure 8). The model with feedback approximates

to the final weight W much faster within the critical first 100.000 trials where the

overall RF structure is learned. The fine tuning, the period in which only little

change takes place, however, is faster in the model without feedback.

f (cycles/picture)
−3 −2 −1 0 1 2 3

(A)

(B)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ x ⋅ f

σ
y

⋅
f

Figure 4. Receptive field properties. (A) The width and height of the Gabor envelope
measured in periods of the cosine wave. A number of example receptive fields (left picture)
and the respective Gabor fit (right picture) are shown along the distribution. Experimental
data from (Ringach 2002) shows more cells with increased length and higher frequencies,
otherwise our data is comparable with the experimentally obtained one. (B) Frequency and
orientation range of the fitted Gabor receptive field functions.

Hebbian learning of receptive fields 257
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Sparsenet (Olshausen and Field 1997) predicts a nonlinear effect for units with

overlapping basis functions. This interesting property is also found in our model.

The units ought to compete with each other such that the one optimally tuned for a

specific stimulus suppresses the less tuned one. According to our model the effective

receptive field of a cell is not fixed but depends on the stimulation, i.e. the change in

the receptive field structure depends on the content of the visual input (Figure 9).

Whereas the excitatory contribution describes the basic tuning of a cell, the stimulus-

dependent gain decrease significantly alters a neuron’s receptive field structure.

If this was true, it would imply that experimental estimates of the receptive field

structure depend on the mapping procedure. It is of course well known that such

mapping must be done with appropriate stimuli. According to our model however,

a cell’s response can only be understood in the context of other cell’s responses.

0 1 2 3
f (cycles/picture)

(A)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ x ⋅ f

σ
y

⋅
f

(B)

Figure 5. Receptive field properties when the nonnegative constraint on the weights is
dropped. The removal of the nonnegativity constraint on the weights only slightly increases
the spatial frequency but it leads to a broader envelope. (A) The width and height of the
Gabor envelope measured in periods of the cosine wave. Receptive field examples (left
picture) and the respective Gabor fit (right picture). The positive and the negative
weights contribute almost equally to the receptive field profile for each position in the
visual field. (B) Frequency and orientation range of the fitted Gabor receptive field functions.
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Figure 7. The influence of � on the scaling of the weights. The graphs show the scaling factor
of the weights dependent on the strength of the weight for two different cells, each in the case
when �¼ 50 is compared to �¼ 100 and when �¼ 10 is compared to �¼ 50. For large
weights, a change in � implements a uniform scaling of the weight. � has no relevant influence
on the receptive field structure.
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Figure 6. Sparseness of layer II activation. The graph shows the histogram of the firing rate
of layer II neurons to 10.000 randomly selected patches averaged over all 288 neurons of layer
II using a model that was trained with feedback (solid black line), without feedback (green
dashed line) and with no constraint on the sign of the weights (dashed red line). We cut the
y-axis at 0.025.
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Our intention to introduce feedback into the model has been motivated by our

earlier studies investigating the role of attention (Hamker 2005, 2006). In these

models the feature space was identical across all layers in the processing hierarchy.

Here, the learning of feedforward and feedback connections allows us to

demonstrate how a search template selective for a particular location, orientation

and frequency is transferred downwards to selectively enhance the gain of center-

surround cells. Such gain increase has been often observed in experiments of visual

attention (Reynolds and Chelazzi 2004), but critical experiments addressing the

source and neural pathways have primarily been performed only in occulomotor

areas, but see Bullier et al. (2001). We propose to experimentally test top-down gain

control by the microstimulation of cells at a particular level of the cortical hierarchy

and the simultaneous recording at an earlier level which receives feedback

(Figure 10). Techniques of such dual stimulation and recording studies are

available (Sommer and Wurtz 2004; Armstrong et al. 2006). Our model predicts

that microstimulation alone should not lead to a significant enhancement of the

neurons at the earlier level (except of a baseline increase), but when these neurons

encode a presented stimulus the response should be enhanced by the micro-

stimulation at the higher level neuron if the lower level neuron participates in the

sensory representation of the higher level neuron.

Discussion

Anatomically massive feedback projections from TE to TEO, V4, V2 and even as far

as V1 have been identified (Rockland and van Hoesen 1994; Rockland et al. 1994).
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Figure 8. Convergence of learning using a model with (solid line) and without (dashed
line) feedback with reference to the final feedforward weights in each condition (W ).
Since the weights converged in both conditions to similar final values (after 400.000
image presentations), we can compare the progress of learning by computing the mean
sum-of-squares difference between the final weights and the present weights in each
condition.
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w
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Figure 9. Effective weight depending on the input to the network. The graph shows the
feedforward weights W of six different cells and their change relative to the presented input.
For details refer to the ‘‘Methods’’ section.
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Figure 10. (A) Transfer of a top-down search template into early selective visual responses.
We simulated the search for a particular feature by providing a top-down attentional signal
(or alternatively an external stimulation of this cell) to a neuron in layer II. As a result,
also neurons in layer I with on/off receptive fields get selectively tuned. (B) Firing rate of
the example neuron in (A). Due to the positive feedback from the particular layer II cell the
response is enhanced relative to the one without an attentional signal. For comparison, the
response without any feedback is also shown.
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 It has been suggested that top-down feedback plays an important role in feature

binding and attention (Lammé and Roelfsema 2000). As it stands now, there are

at least two competitive models of feedback: the generative and the match-

enhancement model. In the generative model a good match between the internal

hypothesis and the actual input results in a weak feedforward signal and a mismatch

in a strong feedforward signal. Thus, feedback primarily serves for ‘‘explaining

away’’ the evidence by suppressing the activity. The match-enhancement approach,

which shows some similarity to adaptive resonance (Grossberg 1980), predicts a

gain increase of the feedforward signal if both signals are consistent with each other.

If both signals are not consistent, no enhancement occurs, i.e., no gain change

takes place (Hamker 2007). A complete model of the ventral pathway should

consist of stackable modules, but also direct connections across more distant layers

should be possible. Thus, the top-down connection to layer II, denoted as an

attentional signal (Figure 10), should indeed be the feedback signal from a layer III

module and should act like the feedback from layer II to layer I. Before these

modules can be put together some issues have to be addressed. First of all, the level

of activity has to be controlled by some form of homeostatic regulation (Turrigiano

and Nelson 2004) to ensure that the feedforward signal neither dies out nor

saturates. Since the top-down signal only acts on the gain and saturates with respect

to the firing rate in the target layer (Equation 1), an explosion of the overall activity

of the circuit is not much of a concern. An overall control of activity would

nevertheless be necessary. Second, mechanisms of spatial and view invariance have

to be addressed, which presumably require additional stages or at least adjustments

of the learning rule.

The generative approach became very popular to demonstrate the learning of

receptive fields, since it is relatively easy to define an objective function which

can be minimized by well-known algorithms. The match-enhancement approach

has been successfully used to describe attentional dynamics (Hamker 2005) but it

has been unclear if feedforward and feedback weights can be learned within the

dynamics of visual processing. In this study, we have shown that consistent

feedforward and feedback weights can indeed be learned within the match-

enhancement approach and thus we offer an alternative to the generative

approach. It is too early to judge which of the two approaches is superior over

the other. The generative approach allows to formulate an energy function,

whereas the match-enhancement approach appears to be more general for

learning weights under attentive control in higher brain areas. Our model allows

to explain how more high level search templates travel in reverse direction to

selectively enhance neurons encoding more detailed aspects, a mechanism we

suggest being fundamental for feature-based attention. This mechanism could

also be responsible for observed attentional effects in the lateral geniculate

nucleus (O’Connor et al. 2002).

Despite these conceptional differences, there are also some important similarities

between the generative approach and ours. According to our notation, the

generative approach seeks to minimize the following energy function:

E ¼
X

i

r
On=Off
i �

X
j

aij � r
II
j

 !2

� �
X

j

SðrII
j Þ ð8Þ
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 where the first part represents the difference between the original and predicted

input, and the second part enforces sparseness. The short-term, ‘‘neural’’ dynamics

are described by the derivative with respect to each rII
j and reads:

�
@E

@rII
j

¼
X

i

r
On=Off
i aij �

X
i

X
l

ailaij � r
II
j � �

X
j

S0ðrII
j Þ ð9Þ

The second term means that neurons with similar receptive fields compete with

each other. This principle can also be found in our model (Equation 2). Despite

some differences in the exact implementation, the general idea is very similar.

Although the importance of an appropriate learning rule on the resulting receptive

field structure cannot be neglected, the competition of cells for sensory

representation (often referred to as ‘‘explaining away’’) appears to be an essential

component in neural coding. Thus, inherent to both models is a dependence of the

receptive field on the stimulus used to measure the receptive field. Since the

effective weight depends on the response of other cells in the layer, a full

understanding of the receptive field would require to know how other cells respond

to the stimulus. This appears consistent with the observation that natural scenes

can evoke much different responses than those estimated by synthetic stimuli

(David et al. 2004). It also suggests that the receptive fields of cells in models of

visual coding should be mapped with similar stimuli as it is done in experiments to

allow better comparisons.

When we consider the exact implementation of mutual inhibition, both models

make different predictions with respect to the development of receptive fields. In our

model, mutual inhibition is already present in the feedforward path and relies on the

similarity of the feedforward weights. The gain of the weights are dynamically

decreased if other neurons with a similar weight kernel already successfully encode

the present stimulus. In the generative model the similarity measurement is based

on the feedback weights and is embedded in the analysis/synthesis loop. If it was

technically possible to selectively shut off the feedback pathway, our model would

predict no impairment in the development of receptive fields, whereas according to

the generative model, receptive field development should be impaired. Although

feedback is, according to our model, not crucial for the development of receptive

fields, feedback can nevertheless alter the receptive field structure, for example

when a particular object is repeatedly presented and attended to (represented with

higher activity compared to other objects).

The activity and the weights in our model are constrained to nonnegative values.

This is motivated by the fact that negative firing rates of neurons do not exist and the

feedforward projection from LGN to layer 4 in V1 is excitatory. In the classical

generative approach no constraint is imposed on the weights as well as the activity.

Nonnegativity combines elementary features additively, whereas otherwise, features

can cancel each other out. In addition to this biological motivation, nonnegativity

has been suggested to lead to a part-based representation (Lee and Seung 1999),

although evidence for this is mixed. For example, nonnegative matrix factorization

(Lee and Seung 1999) does not always lead to a part-based representation (Hoyer

2004), but this property appears improved when an additional sparseness constraint

is used (Hoyer 2004). Without this constraint, nonnegative matrix factorization

does even not converge to oriented receptive fields when natural scenes are

presented (Hoyer 2004). This suggests that sparseness is critical for nonnegative
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 sparse coding to show essential properties of neural coding in visual areas. However,

the degree of sparseness is quite low in our model (only 11% of the one used in

nonnegative matrix factorization). If we do not impose a nonnegativity constraint on

the weights, we observe oriented receptive fields with broader envelopes and a much

higher degree of sparseness. Now the inhibitory feedforward connections allow to

suppress the cell’s response which allows them to get more selective to a particular

feature. The increase in selectivity is reinforced by the first part of the learning rule

ððrII
j � ~rIIÞ

þ
ðrI

i � ~rIÞÞ, which contributes to a weight decay only, when the layer I cell

fires below average and the layer II cell above average. Despite these differences

in the selectivity of the cells, both versions of the model lead to receptive fields

which show some of the typical characteristics observed in V1 cells.

Our model does not contain an additional, more explicit constraint to enforce

sparseness like in Sparsenet. Different forms of sparseness have been recently

reviewed (Rehn and Sommer 2007). According to this study, Sparsenet (Olshausen

and Field 1996) implements a ‘‘soft’’ form of sparseness that limits the average

neural activity. Alternatively, ‘‘hard’’ forms of sparseness enforce the proportion of

neurons representing a single image being small. This ‘‘hard’’ sparse-ness has been

suggested to provide a better fit with experimental data specifically showing also

unoriented, blob-like receptive fields (Rehn and Sommer 2007). Since our model

does not make use of postsynaptic inhibition to suppress less well-tuned cells, our

empirically obtained level of sparseness is low and the distribution shows no

discontinuous density of neural activity as predicted by ‘‘hard’’ sparseness models.

Nevertheless, we observe oriented (low frequency) and blob-like receptive fields.

Acknowledgements

We thank Julien Vitay (Westf. Wilhelms-Universität) for rewriting a part of the code

and the fitting procedure of the receptive fields in the programming language C to

speed up the simulation time. This work has been supported by the German Science

Foundation (DFG HA2630/4).

References

Atick JJ, Redlich A. 1990. Towards a theory of early visual processing. Neural Comput 2:308–320.

Armstrong KM, Fitzgerald JK, Moore T. 2006. Changes in visual receptive fields with microstimulation

of frontal cortex. Neuron 50:791–798.

Barlow HB. 1961. Possible principles underlying the transformation of sensory messages.

In: Rosenblith WA, editor. Sensory communication. Cambridge, MA: MIT Press. pp 217–234.

Barlow HB. 1998. Redundancy reduction revisited. Network 12:241–253.

Bayerl P, Neumann H. 2004. Disambiguating visual motion through contextual feedback modulation.

Neural Comput 16:2041–2066.

Bell AJ, Sejnowski TJ. 1997. The ‘independent components’ of natural scenes are edge filters. Vis Res

37:3327–3338.

Bullier J, Hupe JM, James AC, Girard P. 2001. The role of feedback connections in shaping the

responses of visual cortical neurons. Prog Brain Res 134:193–204.

David SV, Vinje WE, Gallant JL. 2004. Natural stimulus statistics alter the receptive field structure of

v1 neurons. J Neurosci 24:6991–7006.

264 F. H. Hamker & J. Wiltschut



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 S

tu
di

 d
i G

en
ov

a]
 A

t: 
10

:0
7 

15
 A

pr
il 

20
08

 Eckhorn R, Reitboeck E, Arndt M, Dicke P. 1990. Feature linking via synchronisation among distributed

assemblies: Simulations of results from Cat Visual Cortex. Neural Comput 2:293–307.

Falconbridge MS, Stamps RL, Badcock DR. 2006. A simple Hebbian/anti-Hebbian network learns the

sparse, independent components of natural images. Neural Comput 18:415–429.

Grossberg S. 1980. How does the brain build a cognitive code? Psychol Rev 87:1–51.

Hamker FH. 2004. A dynamic model of how feature cues guide spatial attention. Vision Res 44:501–521.

Hamker FH. 2005. The reentry hypothesis: The putative interaction of the frontal eye field,

ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb Cortex

15:431–447.

Hamker FH. 2006. Modeling feature-based attention as an active top-down inference process.

BioSystems 86:91–99.

Hamker FH. 2007. The mechanisms of feature inheritance as predicted by a systems-level model of

visual attention and decision making. Adv Cogn Psychol 3:111–123.

Hancock PJB, Baddeley RJ, Smith LS. 1992. The principle components of natural images. Network

3:61–70.

Harpur G, Prager R. 1996. Development of low entropy coding in a recurrent network. Network:

Comput Neural Syst 7:277–284.

Hoyer PO. 2003. Modeling receptive fields with non-negative sparse coding. Neurocomputing

52–54:547–552.

Hoyer PO. 2004. Non-negative matrix factorization with sparseness constraints. J Mach Learn Res

5:1457–1469.

Hoyer PO, Hyvärinen A. 2002. A multi-layer sparse coding network learns contour coding from natural

images. Vision Res 42:1593–1605.

Jehee JF, Rothkopf C, Beck JM, Ballard DH. 2006. Learning receptive fields using predictive feedback.

J Physiol Paris 100:125–132.

Karklin Y, Lewicki MS. 2003. Learning higher-order structures in natural images. Network

14:483–499.
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