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The distinction between simple and complex cells1 relies on the 
degree of spatial segregation and linearity of responses to contrasts 
of opposite signs. Simple receptive fields are classically considered 
to be linear feature detectors, computing a weighted sum of the local 
contrast of the image1–4, whereas complex receptive fields exhibit 
nonlinear spatial summation properties, resulting in response invari-
ance with regard to position or contrast polarity1,5–7.

Most extracellular surveys have reported V1 receptive fields with 
intermediate behaviors2,6,8, and intracellular recordings have shown 
that the separation between simple and complex cells hides a continu-
ous distribution of synaptic inputs with regard to their degree of line-
arity9. In spite of the general acceptance that simple and complex cells 
correspond to distinct balance levels between linear and nonlinear 
contributions at the synaptic level10–12, few studies have investigated 
whether the functional expression of the simple or complex nature of 
V1 receptive fields depends, in the same cell, on the spatiotemporal 
statistics of the stimulus13,14. This may be surprising, as gain control 
mechanisms are known to ensure the contrast invariance of the cell 
selectivity15,16, and it is well established that adaptation to stimulus 
contrast does not have the same effect on the simple-like and com-
plex-like components of V1 cell responses when assessed with drifting 
gratings17,18. Still, most studies of receptive field adaptation to visual 
statistics have focused either on linear receptive field components in 
simple cells or on nonlinear components in complex cells19–23, and 
not on the differential adaptation of these two receptive field compo-
nents in the same receptive field.

We addressed this question by estimating synaptic and discharge 
fields of cat V1 cells recorded intracellularly in three white-noise 
 stimulus conditions: sparse noise, ternary dense noise and Gabor 
noise. We found that the relative weights of the simple-like and 
complex-like components of the same receptive field adapted to 

the spatiotemporal statistics of the stimulus such that the respective 
contributions of these two functional components in the synaptic 
response remained in constant proportion across stimulus conditions 
once the receptive field was convolved with the visual stimulation 
sequence. This adaptation was not a straightforward scaling of the 
amplitudes of these receptive field components, but instead resulted 
from differential changes in both their spatial extents and their tem-
poral dynamics. These findings suggest that the functional properties 
of the V1 network, as measured from V1 receptive field estimates, 
are not fixed, but instead adapt to the statistical properties of the  
visual input.

RESULTS
We recorded 32 neurons intracellularly in cat area 17 and mapped 
their receptive fields with three protocols: sparse noise, ternary dense 
noise and Gabor noise (Fig. 1a). Comparison across stimulus condi-
tions was conducted at the subthreshold synaptic integration level and 
at the spiking output level. We first focused our analysis on receptive 
field estimates obtained in the spatiotemporal domain (sparse noise 
and dense noise) and further extended the comparison to receptive 
fields estimated in the orientation domain (Gabor noise).

Stimulus dependence of V1 receptive field estimates
Most previous receptive field studies using ternary white-noise stim-
uli decomposed the cell input-output relationship into elementary 
responses to bright and dark stimuli1,6,9,24, namely ON and OFF sub-
fields, respectively. In this framework, the simple or complex nature 
of the receptive field was defined with different types of indexes 
measuring the degree of spatial segregation or antagonism between 
ON and OFF spatial profiles24. In studies using drifting gratings, sim-
ple and complex behaviors were quantified according to the degree 
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Receptive fields in primary visual cortex (V1) are categorized as simple or complex, depending on their spatial selectivity to 
stimulus contrast polarity. We studied the dependence of this classification on visual context by comparing, in the same cell, 
the synaptic responses to three classical receptive field mapping protocols: sparse noise, ternary dense noise and flashed Gabor 
noise. Intracellular recordings revealed that the relative weights of simple-like and complex-like receptive field components were 
scaled so as to make the same receptive field more simple-like with dense noise stimulation and more complex-like with sparse 
or Gabor noise stimulations. However, once these context-dependent receptive fields were convolved with the corresponding 
stimulus, the balance between simple-like and complex-like contributions to the synaptic responses appeared to be invariant 
across input statistics. This normalization of the linear/nonlinear input ratio suggests a previously unknown form of homeostatic 
control of V1 functional properties, optimizing the network nonlinearities to the statistical structure of the visual input.
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of linearity of the cell response with respect to the spatial phase of 
the stimulus at the preferred orientation and spatial frequency2,5,6,8. 
Here, we attempted to reconcile both classifications by switching 
from the classical ON~OFF decomposition of white-noise receptive 
field estimates to a Volterra receptive field expansion into first- (h1st) 
and second-order (h2nd) kernels (Fig. 1b). In this decomposition, 
the filter h1st represents the part of the receptive field that responds 
linearly with contrast polarity, whereas the second-order diagonal 
(h2Diag) pools nonlinear receptive field components independent of 
the contrast sign. The selectivity of this h2Diag component to stimulus 
features such as orientation and spatial frequency is defined by the 
off-diagonal elements of the second-order kernel5.

Because of the high dimensionality of this second-order kernel, 
we estimated off-diagonal interaction terms only in the dense noise 
condition for subthreshold responses. On the one hand, the number 
of collected spikes was generally too small to proceed to a complete 
estimate of the spiking second-order kernel. On the other hand, off-
diagonal components were barely stimulated with sparse noise, mak-
ing their estimation irrelevant in this stimulation context (Fig. 1c).  
Although this limitation restricted the comparison of receptive field 
estimates to the h1st and h2Diag filters, it was not critical with regard to 
our study; the estimation of the apparent simple or complex nature of 
the receptive field can be directly assessed from the balance between 
these two kernels without any knowledge of the feature selectivity 
underlying the complex-like component h2Diag. This truncated  
second-order Volterra expansion is computationally equivalent to the 
ON~OFF decomposition; h1st and h2Diag kernels are strictly related 
to the difference and the sum, respectively, between ON and OFF 
kernels7. However, representing V1 receptive fields as h1st and h2Diag 
components makes it easier to distinguish along both spatial and  
temporal receptive field dimensions between the net linear push- 
pull contribution (the simple-like receptive field component in the 
strict sense) and the nonlinear contribution that responds in the 
same way to both contrast polarities ( the complex-like receptive  
field component).

The Volterra decomposition of two representative cells are 
shown in Figure 2. Whether we considered the synaptic or the spik-
ing receptive field estimates, the comparison between sparse and 
dense visual contexts revealed the same effect. The h1st and h2Diag 

 waveforms were both substantially reduced in amplitude when 
switching from sparse to dense noise (Fig. 2b,d), and they also exhib-
ited systematic changes in their respective spatiotemporal organiza-
tions (Fig. 2a,c). In the sparse noise condition, the receptive field 
of cell 1 expressed a weak simple-like component and a relatively 
large complex-like contribution, whereas dense noise stimulation of 
the same cell enhanced the simple-like contribution and reshaped 
the complex-like component by shrinking its spatial and temporal 
extent. Similarly, in cell 2, the receptive field switched from balanced 
simple-like and complex-like components in the sparse noise condi-
tion to an almost complete suppression of the complex-like contribu-
tion with dense noise. The same stimulus-dependent changes were 
observed in all of the cells that we recorded; whatever the degree 
of linearity of the receptive field estimated in the sparse context, 
the balance between simple-like and complex-like receptive field 
components was modified so to express stronger linear/simple-like 
components (h1st) relative to the nonlinear/complex-like compo-
nents (h2Diag) in the dense context (see also Supplementary Fig. 1).  
In the classical ON~OFF perspective, the comparison of receptive 
field estimates between sparse and dense noise conditions led to the 
same conclusion: ON and OFF subfields exhibited much smaller 
overlap and/or stronger antagonism in the dense than in the sparse 
visual context (Supplementary Fig. 2).

Receptive field simpleness and gain controls
To quantify the balance between simple-like and complex-like recep-
tive field components in each stimulus condition, we defined a simple-
ness index (SI) that measures the spatiotemporal energy of the linear 
h1st kernel relative to the sum of the h1st and h2Diag spatiotemporal 
energies (see Online Methods). The SI thus tends to 0 for complex 
receptive fields and converges to 1 for simple receptive fields. Dense 
noise stimuli resulted in a significant increase of receptive field sim-
pleness compared with sparse noise, both at the subthreshold and 
spiking levels (P << 0.001, paired Student’s t test; Fig. 3a,b). If we 
applied the SI = 0.5 threshold as a distinction criterion, the synaptic 
receptive fields could be classified as simple in 81% of cases in the 
dense noise context versus only 28% in the sparse noise condition.  
A similar switch in receptive field type was found at the spiking level 
with 75% of simple cells with dense noise versus 33% with sparse noise. 

Figure 1 White-noise stimuli and second-order 
Volterra receptive field decomposition.  
(a) Example of single-trial intracellular 
responses evoked in the same cell (cell 1) 
by sparse (SN, black), dense (DN, red) and 
Gabor noise (GBN, gray) stimuli. The visual 
stimulation period is indicated by the horizontal 
black line. Spike amplitudes have been cut off 
at −30 mV to facilitate the comparison between 
Vm fluctuation dynamics. (b) First- and second-
order Volterra kernels were estimated using a 
least-squares method. In this decomposition, 
the h1st kernel linearly filters the stimulus 
contrast variations and can be considered to 
be the simple-like part of the receptive field in 
the strict sense. In contrast, the second-order 
diagonal h2Diag corresponds to the projection of 
the second-order receptive field nonlinearities in 
the first-order stimulus space, pooling receptive 
field components independent of the contrast sign, and can be considered as the complex-like part of the receptive field. The feature selectivity 
underlying this h2Diag complex-like component is provided by the off-diagonal terms of the second-order kernel h2nd. (c) Probability of stimulation 
(P(stim)) of the second-order kernel by sparse noise (left, 10 × 10 stimulation grid) and dense noise (right). In contrast with dense noise stimuli, pixels 
are activated one at a time in sparse noise condition. Consequently, off-diagonal components of the second-order kernel are barely stimulated by sparse 
noise compared to the diagonal elements, making their estimation irrelevant in sparse stimulation contexts.
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The difference in SI trends observed between 
sparse and dense noise conditions when com-
paring spike- and membrane potential (Vm) 
measures did not result from a change in the 
spike threshold nonlinearity, but rather from 
the effect of the half rectification of the Vm 
response on the read-out of the receptive field 
simpleness (Supplementary Fig. 3).

We found that a markedly uniform behav-
ior emerged from the various recorded cells 
when comparing the SI values computed for 
dense and sparse conditions: all of the data points, each representing 
one cell, were positioned along a continuous smooth curve in the 
bivariate correlation plot between dense and sparse noise SI values  
(Fig. 3a,b). We quantified the change in gain of the h1st and h2Diag 
receptive field components by a gain factor (gainSN/DN), defined as the 
ratio of the Euclidian norms of the kernel estimates when switching  

from sparse to dense noise. Over the population, the gainSN/DN  
values measured on first-order synaptic components were consistent, 
on average, with an optimal gain control that would normalize the 
linear filter output relative to the eightfold difference between the s.d. 
of luminance values in sparse and dense noise conditions (mean h1st 
gainSN/DN = 7.75 at the subthreshold level; Fig. 3c). For the complex-
like receptive field component h2Diag, the gainSN/DN values were all 
larger than for simple-like components, both at the synaptic and spiking  
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Figure 2 Stimulus dependence of simple-like 
and complex-like receptive field components. 
(a) First-order kernel (left column, simple-like, 
h1st) and second-order diagonal kernel  
(right column, complex-like, h2Diag) of 
subthreshold (Vm) and spiking (spikes) receptive 
field estimates for a typical V1 cell (cell 1).  
Kernels are depicted as spatial (X, Y) and  
two-dimensional spatiotemporal (Y, time (t))  
z-scored maps. The X,Y spatial maps are 
shown for the lag time corresponding to their 
maximal spatial extent (indicated by the vertical 
black line in Y,t spatiotemporal profiles). 
The thin gray lines show the pixel size used 
for sparse and dense noise. (b) Examples of 
elementary responses corresponding to positions 
indicated in the inset, overlaid over the shaded 
responsive area. Note the differences of scale 
between sparse (black) and dense noise (red) 
waveforms, reflecting a divisive gain control 
of both simple-like and complex-like receptive 
field components when switching from sparse 
to dense visual stimulation. (c,d) Data are 
presented as in a,b for another example  
cell (cell 2).

Figure 3 Receptive field Simpleness and gain control of simple-like 
and complex-like receptive field components. (a,b) Comparison over the 
population of recorded cells of the SI measured from synaptic (a) or spiking 
(b) receptive field estimates between sparse and dense noise conditions. 
All points lie above the identity line, indicating that all receptive fields 
underwent a systematic change in the balance between simple-like and 
complex-like receptive field components such that they appeared to be 
more simple in dense than in sparse noise conditions. The data points 
corresponding to the example cells (shown in Fig. 2) have been circled. 
(c,d) Comparison between the gainSN/DN measured for complex-like (h2Diag 
gainSN/DN) and simple-like (h1st gainSN/DN) receptive field components, at 
the subthreshold (c) and spiking (d) levels. The gain factors affecting the 
complex-like components were systematically higher and appeared to be 
linearly related to the amplitude of the gain controls measured from the  
first-order component h1st, except for two outliers (gray symbols) (blue 
regression lines; Vm: slope = +3.53, r2 = 0.98, P << 0.01, n = 30; spikes: 
slope = +1.81, r2 = 0.90, P << 0.01, n = 11). The vertical dotted line 
indicates the value that we would expect from perfectly adapting linear 
receptive field components; h1st gainSN/DN would correspond to the ratio of 
sparse and dense noise s.d. of luminance values (~8.16, see Online Methods).
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levels (mean h2Diag gainSN/DN = 25.0 at the subthreshold level,  
P << 0.001, paired Student’s t test; Fig. 3c), consistent with an increased 
linearity of the receptive fields in the dense noise context.

Notably, despite the large variability in h1st gainSN/DN, the gain 
controls affecting the complex-like (h2Diag gainSN/DN = β) and sim-
ple-like (h1st gainSN/DN = α) receptive field synaptic components 
were related to each other according to a linear relationship over the 
cell population (slope k = β/α = 3.53, r2 = 0.98, P < <0.01, n = 30;  
Fig. 3c). A similar linear relationship was also observed at the spik-
ing level, with a half slope value (slope k = β/α = 1.81, 11 of 12, 
r2 = 0.90, n = 11; Fig. 3d). This proportionality rule explains the 
smoothness of the global behavior observed in the SI (Fig. 3a,b, see 
Online Methods) and the best fit at the population level is given by a 
hyperbolic function parameterized by the slope of the regression (see  
Supplementary Note 1).

SI
SI

SI SI
DN

SN

SN SN

=

+






× −a
b

2
1( )

 For all cells, h1st and h2Diag gainSN/DN values were larger than 1, 
reflecting a systematic downscaling of the full receptive field from 
sparse to dense noise conditions (Supplementary Fig. 4). They also 
appeared to be negatively correlated with the SI values, indicating that 
the more simple the cell, the weaker the gain controls on simple-like 
and complex-like receptive field components when switching from 
sparse to dense noise (Supplementary Fig. 5).

As illustrated by cell 1 and cell 2 (Fig. 2), these gain controls are not 
a straightforward rescaling of the kernel profiles, but instead imply 
differential changes, at a synaptic level, in both their apparent spa-
tial extent and their temporal dynamics across stimulus conditions. 
Spatially, the visuotopic extents of first-order receptive field com-
ponents were enlarged when switching from sparse to dense noise 
(Fig. 4a), whereas second-order diagonal subfields shrunk conversely 
(Fig. 4a). Temporally, first-order receptive field components (h1st) 
had a shorter latency in the dense noise than in the sparse noise con-
dition (Fig. 4b), whereas the second-order receptive field compo-
nents (h2Diag) did not change in latency (Fig. 4b), but were reduced 
in duration (Fig. 4c). This late shortening suggests that delayed 
inhibition might reduce the propagation of nonlinear/complex-like 
components in the dense noise regime and restrict their response 
integration time relative to the sparse noise condition. The functional 
importance of these receptive field changes was confirmed by the 
ability of subthreshold receptive fields to predict responses to new 
sequences of sparse and dense noise stimuli (validation set of single 
trial data, see Online Methods); even though, at the population level, 
sparse noise and dense noise receptive fields only partially predicted 

responses corresponding to the same stimulus condition, they almost 
systematically failed to explain the response to the other stimulus 
class as well as the receptive field estimated in the same stimulus 
condition as the validation dataset (P < <0.01, paired Student’s t test;  
Supplementary Fig. 6).

V1 receptive field simpleness adapts to visual statistics
To measure the balance between simple-like and complex-like syn-
aptic contributions once the receptive field is convolved with the 
stimulus, we computed another simpleness index (SI*), based on the 
reconstructed outputs of the first- and second-order kernel estimates 
(Fig. 5a and Online Methods). This convolution resulted in a rea-
lignment of the SI values; over the cell population, the SI* values 
were indistinguishable between sparse and dense noise conditions 
(Fig. 5b), suggesting that the balance between simple-like and com-
plex-like contributions remains unchanged in V1 cell synaptic activity 
whether the visual test noise is sparse or dense.

To test a possible generalization to other visual input statistics, 
we measured the simple or complex nature of synaptic and spiking 
receptive fields estimated with Gabor noise stimuli (for 20 of 32 cells; 
Supplementary Fig. 7). The SI computed in the Gabor noise con-
dition revealed that synaptic (Fig. 5c) and spiking receptive fields 
(Supplementary Fig. 7c) were far more complex with Gabor noise 
than with dense noise (or, to a lesser extent, with sparse noise; data 
not shown). This result is consistent with our previous finding, as, 
for cortical cells, the Gabor noise protocol can be considered to be a 
sparse stimulation in the Fourier domain. Accordingly, we found that 
no difference was noticeable between SI* values measured in the Gabor 
noise and the dense (Fig. 5c) or the sparse noise (data not shown) 
conditions, which reinforces and generalizes our hypothesis of a nor-
malization of the simpleness of the visually evoked synaptic drive.

This realignment of the SI values observed after convolving the 
receptive fields with the different stimulus sequences was visible 
even when considering only the h2Diag filter for reconstructing the 
 complex-like component of the dense noise response (Supplementary 
Fig. 8). Thus, this normalization cannot simply be explained by the 
recruitment of the off-diagonal terms of the second-order kernel in 
the dense noise context; the stimulus-dependent changes observed 
on the second-order diagonal h2Diag contribute substantially to the 
invariance of the simpleness of the reconstructed receptive field out-
puts across input statistics.

The most sophisticated fits of V1 receptive fields in previous stud-
ies relied on a convergence of multiple parallel linear subunits whose 
outputs were combined nonlinearly12. In this model architecture, 
the afferent filters can be considered as simple-like or complex-like 

Figure 4 Spatiotemporal reconfiguration of simple-like and complex-
like receptive field components. (a) Comparison between dense noise 
and sparse noise conditions of the maximal spatial extents of significant 
responses measured in simple-like (h1st, top) and complex-like (h2Diag, 
bottom) receptive field components (units, visual degree of apparent 
diameter). Although simple-like receptive field components appeared to be 
significantly larger in the dense noise than in the sparse noise condition 
(paired Student’s t test, P < 0.01), the complex-like receptive field 
components were significantly smaller (paired Student’s t test, P << 0.01). 
(b) Comparison of onset latencies of simple-like (h1st, top) or complex-
like (h2Diag, bottom) receptive field components between dense noise and 
sparse noise conditions. (c) Comparison of peak latencies of simple-like 
(h1st, top) or complex-like (h2Diag, bottom) receptive field components 
between dense noise and sparse noise conditions.
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receptive field components depending on the degree of sensitivity 
to contrast polarity along the stimulus feature dimension for which 
they are selective. To assess whether the stimulus-dependent changes 
in receptive field simpleness could arise trivially from mapping such 
second-order receptive field architectures with different stimulus 
statistics, we simulated non-adaptive receptive field models, made 
up of one simple-like subunit in parallel with multiple linear filters 
whose outputs were squared (Fig. 6a). By imposing in graded ways 
the relative weights of the quadratic and the linear components, 
we synthesized a set of receptive field models that each expressed 
a distinct degree of complex behavior. We simulated the responses 
to sparse noise, Gabor noise and dense noise for each of these ‘non-
adaptive’ receptive field models and estimated the first- and second-
order kernels, using the same decomposition as in our V1 cells. 
The SI measures obtained from these receptive field models did 
not differ between sparse and dense noise (Fig. 6b) or Gabor noise 
and dense noise conditions (Fig. 6c), which indicates that the effect 
that we observed in our V1 cell population is unlikely to be a result 
of any bias of our kernel estimates by the statistical properties of 
the visual input itself. These non-adaptive models further illustrate 
that, in the absence of adaptation of the receptive field simpleness, 
the global synaptic responses evoked by dense stimuli are expected 

to express more complex-like contributions than those evoked in 
sparse stimulation contexts; the SI* values computed directly from 
the receptive field model outputs revealed much stronger complex-
ity in dense noise than in sparse noise (Fig. 6b) or Gabor noise 
contexts (Fig. 6c). Taken together, these results strongly suggest 
that the stimulus-dependent changes observed in V1 receptive field 
simpleness reflect a regulatory mechanism that compensates for the 
relative strength with which the stimulus recruits the simple-like 
and complex-like receptive field components, so as to maintain the 
simpleness of the visually evoked synaptic drive independent of 
changes in input statistics.

To get an insight into the time constants of this receptive field 
adaptation, we averaged across cells the synaptic responses evoked 
by each of these stimuli (Supplementary Fig. 9). This mean response 
component, which reflects the dynamics of the complex-like contri-
butions averaged over the population, decayed exponentially in the 
first few hundred milliseconds in sparse noise (τ = 740 ms), Gabor 
noise (τ = 820 ms) and dense noise (τ = 750 ms) conditions. If we 
assume this decay is related to the adaptation of the simple/complex 
balance, its time constant suggests that this process is not instantane-
ous, but is fast enough to be still relevant regarding natural viewing  
condition dynamics25.

Figure 5 V1 receptive field simpleness adapts to 
visual statistics. (a) In each stimulus condition, the 
simpleness was measured in two ways: by the SI, 
which compares the relative power of the simple-
like (h1st) and complex-like (h2Diag) components of 
receptive field estimates (RF, middle), and by the 
SI*, which measures the balance between simple-
like and complex-like synaptic contributions once 
the stimulus-dependent receptive fields have 
been convolved with the corresponding stimulus 
sequences (RF * Stim, right). In sparse stimulation 
conditions, as the pixels are activated one at a 
time, the nonlinear contributions conveyed by the 
off-diagonal terms of the h2nd kernel have barely 
any weight in the response, and the output of the 
h2Diag filter provides an almost complete estimate 
of the complex-like synaptic contributions. In 
contrast, in the dense noise condition, as multiple 
pixels are activated at the same time, the dynamics 
of the evoked complex-like response also relies on the selectivity of the h2Diag receptive field components to the spatiotemporal patterns that are 
presented. We thus computed the convolution of  
the stimulus with the full second-order kernel estimate h2nd to reconstruct the complex-like synaptic contributions evoked by dense noise stimuli.  
(b) Comparison of SI values between sparse and dense noise conditions. Left, graph shown in Figure 3a. Right, comparison of SI* values. Note that over 
the population the SI* values are much more aligned along the identity line than the SI values. (c) Data are presented as in b for the comparison of the 
Gabor noise and dense noise conditions.
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Figure 6 Simpleness in non-adaptive receptive field models.  
(a) Parallel LN cascade receptive field architecture in which  
linear filter outputs corresponding to different stimulus feature 
selectivities are passed through a second-order polynomial  
nonlinearity (one linear branch and several quadratic branches).  
In this model architecture, the linear component provides simple-like 
contributions, whereas the quadratic components contribute  
in a complex-like manner to the cell response. By keeping the  
same receptive field structure while imposing the relative weights 
of these two types of afferent components, we simulated a set of 
receptive fields, each expressing a fixed degree of simpleness,  
and simulated their responses to sparse noise, Gabor noise and  
dense noise stimulus sequences. (b) Left, comparison of the  
SI between sparse and dense noise conditions when considering  
the receptive fields estimated from the responses of the non-adaptive 
model depicted in a. Right, comparison of the SI* (measured directly from the receptive field model outputs) between sparse and dense  
noise conditions. (c) Data are presented as in b for the comparison of the Gabor noise and dense noise conditions.

X
Y

L

NL

NL
∑

NL

0
0 SI SN

RF

1 0 SI* SN

C
om

plex
S

im
ple

RF*Stim

1

S
I D

N

1

0

S
I*

 D
N

1

0
0 SI GBN 1 0 SI* GBN

C
om

plex
S

im
ple

1

S
I D

N

1

0

S
I*

 D
N

1

a b

c

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



1058  VOLUME 14 | NUMBER 8 | AUGUST 2011 nature neurOSCIenCe

a r t I C l e S

Predictions by gain-control models
From the perspective of our receptive field decomposition, the most 
straightforward model of adaptation of V1 receptive field simpleness 
is to add two separate gain controls (α and β) to the receptive field 
models depicted in Figure 6a, which would account for the branch 
specific division of the simple-like and complex-like receptive field 
components, respectively, when switching from sparse to dense noise 
(differential gain control model; Fig. 7a). However, we investigated 
whether our results (Fig. 7b,c) could be explained by simpler adaptive 
models, in which the gain control process does not require any prior 
distinction between afferent receptive field components regarding the 
simple or complex nature of their contributions.

In the receptive field architecture described above (Fig. 6a), a mini-
mal hypothesis for adaptation of the cell response to the stimulus 
strength is to assume the existence of a gain control process γ that acts 
after the nonlinear filtering stage (post-NL) and changes the integra-
tive properties of the model by normalizing the variance of the evoked 
response with regard to the increase in the stimulus power (GC1;  
Fig. 7d). As this GC1 model affects the simple-like and complex-
like afferent contributions equally, it is unable to explain any adapta-
tion of the receptive field simpleness between sparse and dense noise 
(Fig. 7e), and the visually evoked responses remain much more 
 complex in dense than in sparse visual conditions (Fig. 7e). Still, one 

peculiar aspect of this model is that the gain factors measured on h1st 
and h2Diag kernels are linearly related and inversely correlated with the 
degree of simpleness of the receptive field (Fig. 7f), similar to what we 
found experimentally (Fig. 7c and Supplementary Fig. 4).

Another minimal adaptation hypothesis is to consider a gain control 
process before the nonlinear filtering stage (pre-NL), that rescales the 
gain of the afferent subunits with regard to the increase in the stimulus 
power26 (GC2; Fig. 7g). In this normalization model, all of the linear 
filtering stages are divided by a single factor, g, and the second-order 
receptive field components, which are related to the squared output 
nonlinearities, are scaled as g2. Consequently, the receptive field sim-
pleness is expected to increase with the visual input strength. This type 
of model can partially account for our results; for a given receptive field 
structure, one can find a particular value g* for the divisive gain, cor-
responding to an under-adaptation of the linear components, but for 
which the increase of receptive field simpleness between sparse noise 
and dense noise (Fig. 7h) compensates exactly for the strength with 
which these two stimuli recruit simple-like and complex-like receptive  
field components (Fig. 7h and Supplementary Note 2). However, the 
GC2 model implies a quadratic relationship between the apparent scal-
ing factors on simple-like and complex-like receptive field components 
(Fig. 7i), which is not consistent with our data. Moreover, in this model, 
different values of gain control g necessarily lead to different degrees of 

Figure 7 Simpleness in gain control receptive 
field models. (a) Differential gain control model. 
The adaptation of V1 receptive field simpleness 
can be explained by adding two separate gain 
control processes (α and β) to the receptive  
field models depicted in Figure 6a. These 
processes respectively divide simple-like and 
complex-like receptive field components when 
switching from sparse to dense noise. (b) Shown 
is the graph depicted in Figure 5b. (c) Shown  
is the graph depicted in Figure 3c. The colors  
of the symbols correspond to three different 
ranges of value for the SI values measured in 
the sparse noise condition. (d) Post-NL gain 
control model (GC1). A gain control process  
γ acts post-NL and normalizes the variance of 
the evoked response across stimulus conditions. 
(e) SI (left) and SI* (right) measured from GC1 
receptive field model responses in sparse and 
dense noise conditions. (f) GainSN/DN measured 
from the h1st and h2Diag kernels estimated from 
the GC1 receptive field responses. Dark and 
light colors of the symbols indicate low and 
high values of γ, respectively. (g) Pre-NL gain 
control model (GC2). A gain control process g 
acts pre-NL and results in a division of linear 
filter outputs by g when switching from sparse 
noise to dense noise, independently of the 
receptive field simpleness. (h) SI (left) and SI* 
(right) measured from GC2 receptive field model 
responses in sparse and dense noise conditions. 
(i) GainSN/DN measured from the h1st and h2Diag 
kernels estimated from the GC2 receptive field 
responses. The purple curve indicates the 
quadratic relationship. Dark and light colors 
of the symbols indicate low and high values of 
g, respectively. g* corresponds to the value for 
which we observed a complete adaptation of the receptive field simpleness between sparse noise and dense noise conditions (SI*DN = SI*SN). (j) Hybrid 
gain control model (GC3), a combination of the GC1 and GC2 models (with g = g*). (k) SI (left) and SI* (right) measured from GC3 model responses 
in sparse and dense noise conditions. (l) GainSN/DN measured from the h1st and h2Diag kernels estimated from the GC3 responses. The slope of the 
regression line (blue) corresponds to g*. Note that this model is mathematically equivalent to the differential gain control model (a) considering  
α = g* × γ and β = g*2 × γ. Dark and light colors of the symbols indicate low and high values of γ, respectively.
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adaptation of the receptive field simpleness (Fig. 7h). Thus, the GC2 
model cannot explain both the diversity in the gainSN/DN values and 
the invariance of the SI* across stimulus conditions.

Notably, the combination of the two mechanisms, the pre-NL gain 
control g* and the post-NL gain control γ (GC3; Fig. 7j), appeared to 
be sufficient to account for both the invariance of the SI* (Fig. 7k) 
between sparse and dense visual contexts and the linear relationship 
between h1st and h2Diag gain factors (Fig. 7l). This GC3 model illus-
trates that the adaptation of V1 receptive field simpleness can be 
explained by gain control processes independent of the functional 
distinction between simple-like and complex-like receptive field com-
ponents. Nevertheless, this conclusion holds only for the parameters 
described above (Fig. 7): none of these models is suitable for explain-
ing a differential reorganization of simple-like and complex-like spa-
tiotemporal profiles between sparse and dense visual contexts (Figs. 2 
and 4). More realistic network architecture and/or gain controls with 
additional dynamic nonlinearities are needed to explain the spatio-
temporal specificity of these kernel waveform changes.

DISCUSSION
Our results show that the balance between simple-like and complex-
like receptive field components depends on the statistics of the visual 
input, such as the same receptive field appearing to be more simple-
like in dense than in sparse visual conditions. Stimulus-dependent 
changes in the simple or complex behavior of V1 cells have already 
been reported in earlier studies using drifting grating stimuli, as a 
function of stimulus contrast and receptive field surround recruit-
ment13,17,27. However, our study is the first, to the best of our 
knowledge, to show such clear changes in terms of spatiotemporal 
reorganizations of synaptic and discharge fields at the single cell 
level, interpretable as a coherent adaptive behavior at the population 
level. This stimulus dependence of V1 receptive field simpleness 
does not exclude the possible existence of different classes of cells 
(in terms of afferent connectivity) in the cortical population. Our 
results instead suggest that it reflects an adaptation of the ‘effective 
connectivity’ of the network28 to the statistical properties of the 
stimulus, making the balance between simple-like and complex-
like synaptic influences (SI*) afferent to any cortical cell invariant 
from changes in visual input statistics. If one accepts the simplified 
view that the SI reflects, for any given receptive field, the relative 
dominance of the local thalamic drive29,30, it is likely that even in 
cells that receive direct geniculo-cortical afferents (in cat area 17, 
those in layer 4 and to a lesser extent layer 6)31, the receptive field  
simpleness adaptation remains proportional to the small effect of the 
complex-like contributions that they might receive (as for the cells 
close to the point where SIDN = SISN = 1.0; Fig. 3a). Our anatomical 
reconstruction of four cells labeled with biocytin supports the view 
that, whatever their rank in the thalamo-cortical layer hierarchy, all 
cortical cells are likely to exhibit an adaptation of their receptive field 
simpleness with graded extent (Supplementary Fig. 10). This conclu-
sion is consistent with the previously described stimulus dependence 
of linear kernel estimates in superficial versus input layers22,23. Our 
data further suggest the existence of an adaptation process that would 
result, across all cortical layers, in a rescaling of the complex-like com-
ponents in proportion with the gain control affecting the simple-like 
components. The effects that we describe are more detectable at the 
subthreshold than at the spiking level, where additional static non-
linearities may interfere with the global read-out of the connectivity 
rule (Supplementary Fig. 3).

Our results must be interpreted in a functional perspective and 
several non-exclusive mechanisms can still be considered. Our data 

do not completely exclude the contribution of a subcortical adaptation 
process that would make the LGN inputs to the cortex more nonlinear 
in sparse visual conditions than in dense visual contexts32,33. However, 
this interpretation is insufficient to account for the fact that the Gabor 
noise stimuli induced V1 receptive field changes that are consistent 
with the sparse nature of the stimulation in the orientation domain, 
whereas they likely correspond to dense visual inputs for retinal or 
thalamic cells in view of the range of spatial frequencies used34.

Notably, our simulations indicate that a simple gain control model 
(Fig. 7j) can partially reproduce the adaptation of V1 receptive field 
simpleness, provided there is a specific rescaling of the strength of 
the inputs to the network, combined with a gain control of the ampli-
fication performed by the downstream cell. Literally, the model sug-
gests that this adaptive behavior could result from a combination of 
 activity-dependent adaptation at the thalamic level, synaptic depres-
sion at thalamo-cortical synapses or any mechanism that reduces the 
effect of the feed-forward drive, and synaptic depression at cortico-
cortical synapses, increased levels of intracortical inhibition, activity-
dependent changes in cell intrinsic properties or any mechanism that 
reduces the intracortical amplification.

The increase of receptive field simpleness in dense visual conditions 
could also be explained by a change in the balance between excita-
tion and inhibition35 resulting in a suppression of the complex-like 
synaptic components estimated in the sparse noise context. In a gen-
eralized feed-forward perspective, this suppression could either come 
from an increase of push-pull inhibition36 or from the enhancement 
of an unselective complex inhibition37–39 (Supplementary Fig. 11), 
but in both cases, the apparent increase of receptive field linearity in 
the dense noise condition would result from the interaction between 
excitatory and inhibitory nonlinear inputs.

Another interpretation would be to consider the idea that the 
simple or complex nature of V1 receptive fields arises from a vari-
able balance between feed-forward and lateral inputs10,11,40, the 
feed-forward drive providing the simple-like component while the 
recurrent lateral connections convey complex-like contributions. 
Accordingly, our results might be explained by the functional recruit-
ment of lateral interactions in sparse stimulation conditions and by 
the decoupling of adjacent cortical columns in dense visual contexts 
(Supplementary Fig. 11). This view is supported by recent results 
suggesting that the lateral propagation of activity between adjacent 
cortical units decreases substantially when the stimulus contrast 
is increased41. In view of our own results, the stimulus depend-
ence of the lateral cortical interactions likely generalizes to other  
stimulus dimensions, rather than remain exclusive to the local con-
trast. Similar effects might be obtained by increasing the spatial or 
temporal density of the stimulus, with the important parameter 
probably being the effective contrast along the stimulus feature 
dimensions for which the cell is selective42,43.

Regardless of the mechanisms underlying this adaptive behav-
ior, one last question is the relevance of this adaptation in natural  
viewing conditions. The synaptic normalization process that we 
found could maintain in V1 the relative contribution of linear and 
nonlinear synaptic inputs invariant to dynamic changes in the local 
 spatiotemporal context of the visual scene. During oculomotor explo-
ration, depending on eye fixation location, a given receptive field 
would sample locally sparser or denser regions of a natural scene; 
synaptic normalization would allow the activated network to extract 
the same relative amount of information along the phase-sensitive and 
the phase-insensitive processing streams, thus ensuring the detection 
of the most relevant features of the visual scene independently of 
the local context in which they are embedded. This would improve  
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information transmission by avoiding the over-representation of 
second-order correlations among cell population responses in dense 
visual contexts while increasing their detectability in sparse contexts, 
thus adapting the neuron’s dynamic range to the level of correlation 
present in the visual input. We propose that the stimulus depend-
ence of V1 receptive field simpleness reflects a general rule of func-
tional homeostasis common to many sensory systems33,44–47, which 
would ensure the adaptation of the network nonlinearities to ongoing 
changes in the statistical structure of the sensory input, according to 
optimal encoding principles48.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Animal preparation and electrophysiological recordings. Data presented here 
were obtained from anesthetized (alfatesin) and paralyzed cats, according to the 
American Physiological Society’s Guiding Principles for the Care and Use of 
Animals. The animals used in these experiments were bred in the Central CNRS 
Animal Care (French Agriculture Ministry Authorization: B91-272-105) under 
required veterinary and National Ethical Committee supervision. Intracellular 
electrodes were made from 1.5-mm-thick borosilicate pipettes filled with a solu-
tion of 2 M potassium methyl sulfate and 4 mM KCl. In some experiments, we 
labeled intracellularly the cells that we recorded by adding 1% biocytin (wt/vol) 
to the intra-pipette solution. Electrode resistances ranged from 60 to 90 MΩ. 
Recordings were performed using an Axoclamp 2A amplifier.

Visual stimulation. Visual stimuli were generated using in-house software 
(Elphy, G. Sadoc, UNIC-CNRS) and presented on a gamma-corrected monitor 
with a refresh rate of 150 Hz and a background luminance of 12 cd m−2. Three 
kinds of white noise stimuli were presented in the same explored visual area: two-
dimensional ternary sparse noise (random sequences of non-overlapping white 
(23 cd m−2) or black (1 cd m−2) squares, presented one at a time on a uniform 
luminance background (12 cd m−2) over a 10 × 10 grid (except for cell 2, 15 × 
15)), two-dimensional ternary dense noise (random sequences of squares (same 
squares as in the corresponding sparse noise condition), which could be either 
white (23 cd m−2), black (1 cd m−2) or equal to the background (12 cd m−2) with 
equal probability), and Gabor noise (consisting of random sequences of flashed 
Gabor stimuli). Michelson’s contrast was held constant at 0.5 and the spatial 
Gabor attenuation constant was 40% of the explored region dimensions. For each 
frame, orientation, spatial frequency and spatial phase were randomly chosen 
from a discrete uniform distribution consisting of six orientations ranging from 
0° to 150°, five spatial frequencies ranging from 0.2 to 1.1 cycles per degree, and 
four spatial phases ranging from 0 to 270°.

The seed used for initializing the random process of these three white noise 
stimuli was changed for each sequence (a necessary condition in sparse sequences 
to estimate the receptive field function). For each cell, visual stimuli were pres-
ented in an interleaved way, in the same region of the visual field and at the same 
frequency (frame duration: 13 ms for 15 cells, 26 ms for 12 cells, 33 ms for 4 cells 
and 56 ms for 1 cell). We adapted the size of the explored visual area to the appar-
ent spatial extent of the receptive field. Still, the number of pixels covering the 
significant receptive field area (sparse noise and dense noise conditions) varied 
from cell to cell (from 4 to 54 pixels) and was, on average, 20 pixels.

Note that although sparse and dense noise stimuli exhibited the same ele-
mentary contrast steps (c), they differed strongly in spatiotemporal statistics. 
In the sparse noise condition, as pixels are activated only one at a time, the  
power of the stimulus (P2) is very low (P c2 22

200
= ×  for a 10 × 10 simulation grid). 

This is in contrast with the dense noise condition, where the three luminance 
states are, on average, equally represented in each frame (P c2 22

3
= ). These dif-

ferences between sparse and dense stimulation regimes give a ratio between their 
respective s.d. of luminance values of 2 3

2 200
8 16/

/
.≈ .

Second-order Volterra kernel estimation. Action potentials, when present, were 
automatically filtered out from synaptic fluctuations offline. First- and second-
order receptive field components were estimated using a least-squares method, 
considering either the spiking response or the subthreshold fluctuations. This 
estimation consisted of solving the system of equations corresponding to the 
Volterra series expansion 

where R(t) is the cell response recorded at time t, sampled with a 1-ms resolu-
tion, S is the stimulus input vector (see Supplementary Note 3), and h0, h1st, h2nd  
correspond to the zero- , first- and second-order Volterra kernels, respectively.

The kernels estimated from responses to Gabor noise obeyed the same 
 formalism as in the spatiotemporal domain except that h1st and h2nd were 
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 functions of position in the Fourier space. In this condition, contrast of opposite 
signs corresponded to identical Gabor stimuli, but with spatial phases separated 
by 180°.

Note that, as a result of the sparse statistical structure of sparse noise and 
Gabor noise stimuli, the off-diagonal elements of the h2nd kernel are barely 
stimulated, which means that the estimation of the second-order receptive 
field components comes down to the estimation of its diagonal elements h2Diag  
( h x y h x y x y2 2Diag nd( , , ) ( , , , , , )t t t= ). Consequently, in these sparse stimula-
tion conditions, the second-order Volterra decomposition (equation (1)) can 
be simplified as 

R t h h x y S x y t
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In contrast, in the dense noise condition, the full second-order kernel (diagonal  
and off-diagonal elements) is stimulated such that it is possible to estimate it 
completely. Still, as a result of the high dimensionality of this functional space, the 
estimation of the off-diagonal elements is constrained by the recording length. 
Although the number of collected spikes was generally too small to compute 
this estimate, our voltage records allowed us to proceed to the estimation of the 
off-diagonal elements of the second-order kernel for all cells. To keep a ratio of 
at least 1:5 between the number of kernel parameters and the number of data 
points, we had to restrict spatially and temporally the estimation of these off-
diagonal terms. Nonetheless, despite this constraint, we were able, for all cells, 
to cover in the off-diagonal space the elements corresponding to the full spatio-
temporal extent of the significant responses estimated in the h2Diag component. 
Note that the estimation of the h2Diag kernel parameters was unchanged whether 
we considered the estimation of the off-diagonal elements of the second-order 
kernel or not.

Variance of kernel estimates. The statistical significance of kernel parameters 
was computed as spatiotemporal z-score maps in which each kernel parameter 
(corresponding to a particular spatiotemporal position) was divided by the s.d. of 
the kernel error calculated from the parameter covariance matrix. A major benefit 
of using least-squares methods is that it provides a direct theoretical expression of 
the confidence bounds to take into consideration for kernel parameters49. If we 
assume that the corrupting noise in the output is a stimulus-independent Gaussian 
process with zero-mean and variance σ2, the variance of each kernel parameter is 
given by the corresponding elements on the diagonal of the parameter covariance 
matrix Cθ, which is computed from the inverse of the stimulus covariance matrix H  
(Hessian matrix) and an unbiased estimate of the residual variance sres

2 ,   
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( ( ) ( ))

with N being the number of time bins, M being the number of kernel parameters 
and ˆ( )R t  being the response output reconstructed from the estimated kernels.

Variance of the kernels output. As the kernel outputs are linearly related to their 
parameters, the variance of the error of the convolution product at time t between 
the stimulus sequence and the kernel ((h1st × S)t or (h2nd × S)t) can be deduced 
from the parameter covariance matrix Cθ 49

s q( * )( )
( ) ( )h S t h

T
hU t C U t2 = × ×

where Uh(t) is a vector which contains the appropriate stimulus elements (that is, 
S x y t( , , )− t  or S x y t S x y t( , , ) ( , , ))1 1 1 2 2 2− × −t t  in positions corresponding to 
the parameters of the considered kernel and is zero elsewhere.

Quantification of kernel estimates. All kernel quantifications were based on the 
total duration of the impulse responses instead of selecting one particular time 
epoch (such as when the receptive field amplitude or spatial extent is maximal). 
To avoid any contamination of our measurements by the residual noise of our 
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kernel estimates, we only considered spatiotemporal positions that were statisti-
cally significant (z score ≥ 2.33, P ≤ 0.01). The SI was defined as 
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The relationship between dense noise and sparse noise SI values (Fig. 3a and b)  
was fitted by

SI
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where k is a constant parameter over the cell population (see Supplementary 
Note 1).

The gain factor gainsparse/dense between sparse noise and dense noise kernels 
was defined as the ratio of the kernel Euclidian norms associated with the differ-
ent stimulus conditions, considering the kernels as spatiotemporal vectors 
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 SI*, which measures the strength of the simple-like and complex-like compo-
nents of the synaptic response, was computed from the convolution products 
between the visual stimulus and the first-order (h1st) or second-order (h2nd) ker-
nels, considering only the components of the kernel output that were statistically 
significant (z score ≥ 2.33, P ≤ 0.01). 
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where the • symbol denotes the convolution product between the first- or second- 
order kernel and the stimulus sequence (see equation (1)).

Note that, in sparse noise and Gabor noise conditions, given that the h2nd 
kernel comes down to its diagonal elements h2Diag, the expression of SI* is  
equivalent to 
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 Areas delimited by contours of 99% significant responses (z score ≥ 2.33,  
P ≤ 0.01) were measured for each kernel on spatially smoothed versions of their 
respective z-score maps and plotted over time. The maximal spatial extent of these 
contours (measured by their equivalent apparent diameter expressed in degrees of 
visual angle) as well as the timing of this maximum (peak latency) was measured 
for each kernel to be compared between conditions. The onset latency of each ker-
nel was derived from the contour area measurement. The initial radial growth of 
the significant responsive area was generally constant as a function of time and we 
computed the onset time by defining an area threshold corresponding to half of 
the maximum and then moving backwards in time until the time derivative of the 
receptive field area fell below 10% of the derivative calculated at half-amplitude, 
for five continuous time steps (5 ms). This measure thus reflects the latency of 
the earliest response, which initiates the progressive build-up of the full receptive 
field domain. We found much more reliable measurements using this method 
than with methods based on the derivative of the kernel waveforms.

Predictive power of receptive field estimates. We assessed the ability of 
sparse noise and dense noise receptive field estimates to predict responses to 

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

new datasets which were not used for estimating the kernels. Receptive field  
estimates were first convolved with the validation stimulus sequence according 
to equation (1) and rescaled according to the best linear coefficient (in the least-
squares sense) to avoid any failure of prediction just due to a static change in the 
linear gain. Predicted and recorded responses were low-pass filtered at 75 Hz 
and binned at 1-ms resolution. We quantified the accuracy of the prediction by 
measuring the predictive power, defined as the percentage of variance of the cell 
response explained by the prediction, and the predictive correlation, defined as the 
Pearson’s correlation coefficient between measured and predicted responses. 
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where V̂m  denotes the response predicted by the receptive field estimates, Vm is 
the recorded cell response and 〈Vm〉, the mean response level.

To predict the response to the same stimulus condition as the one used for 
estimating the receptive field, we considered 95% of the total recording length 
for kernel estimation, computed the prediction on the 5% left with the estimated 
kernels and repeated this procedure until we completed the prediction of the 
full response.

Note that, to have the longest recording duration for estimating the second-
order kernels, we only recorded single trial responses (the seed of the white noise 
was changed every trial). Thus, given that the actual response variance also con-
tains a certain amount of noise (which would have been reduced by averaging, 
had we used the same seed for all trials), our measurements of predictive power 
correspond to an underestimate of the true ability of receptive field estimates to 
predict the stimulus locked response of the validation dataset.

Receptive field simulations. Simulated receptive fields were made up of a parallel 
bank of linear filters (Fig. 6a), shaped as a sum of two or three non-overlapping 
Gaussian zones with alternating polarities, so that they looked like typical simple 
cell receptive fields. Each filter was then convolved with sparse noise, Gabor noise 
or dense noise sequences and their outputs were passed through a multidimen-
sional second-order polynomial in which one of the filter outputs was linearly 
transformed while the others were squared. In this static nonlinearity, the strength 
of the first-order coefficient relative to that of the quadratic components thus 
influenced the simple or complex nature of the full receptive field model. This 
allowed us to define, in a graded way, several receptive field models with proper-
ties intermediate between purely complex and purely simple behaviors and whose 
degree of linearity remained the same across stimulus conditions. In addition to 
these non-adaptive receptive field models, we also simulated adaptive filter banks 
which were strictly identical to those simulated in Figure 6, but included gain 
control processes (Fig. 7d,g,j). In the GC1 receptive field models, the variance of 
the global response evoked by the stimulus sequence was forced to stay constant 
across stimulus conditions, by scaling the filter bank output after the nonlinear 
filtering stage with the appropriate factor γ. In the GC2 receptive field models, 
the gain of all linear subunits was divided by a constant factor g when switch-
ing from sparse noise to dense noise, regardless of the degree of linearity of the 
receptive field. Three different values of g were tested: g = 8.16, corresponding to 
a full adaptation of the linear outputs to the change in stimulus energy, g = 5, and  
g = g* = 3.42, corresponding to a full adaptation of the simpleness of the recep-
tive field model output between sparse noise and dense noise (SI SIDN SN

* *= ).  
Finally, in the GC3 receptive field models, we combined the division of the 
linear subunits by a factor corresponding to a complete adaptation of the  
SI* (g = g*) and the normalization of the variance of the filter bank output across  
stimulus conditions.

(11)(11)

(12)(12)

49. Westwick, D.T. & Kearney, R.E. Identification of Nonlinear Physiological Systems 
(Wiley-IEEE, 2003).
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