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Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across
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Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.
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the intrinsic variability of scene elements. Here we extend the effi-
cient coding approach and propose that an important aspect of visual
computation is to represent the myriad statistical distributions
that characterize local image regions. Rather than coding the pixel
intensities of a patch of texture or edge, neurons in later stages encode
the image distribution (that is, the range and pattern of variability of
pixel intensities or image features) that is most consistent with the
input image. This allows the neural representation to generalize
across individual fixations and convey more abstract properties of
the image. We demonstrate that a model designed around this com-
putational goal and optimized for natural scenes explains nonlinear
properties of complex cells and neurons in higher visual areas,
thereby providing a new functional interpretation for these effects.

Fundamentally, generalization is the identification of common
characteristics of a class from specific instances. The goal of the
proposed model is to learn the statistical distributions that character-
ize local image regions, such as those in Fig. 1, and identify them from
individual image patches. What statistical regularities are relevant for
this task? As the examples in Fig. 1 suggest, the distributions of
perceptually similar images show consistent patterns in the degree
of variation along some dimensions, as well as in the strength of
correlations (and anti-correlations) among different feature dimen-
sions. Although these patterns appear subtle when projected onto
two dimensions, as in the examples, the full multivariate distribution,
consisting of hundreds of dimensions, produces prominent statistical
signatures that can be exploited by the visual system.

To determine how the model generalizes, we must specify how it
represents distributions of local image regions. A simple way to sum-
marize the patterns of correlations for a given type of image is the
covariance matrix of the data. A neural code for this structure could be
defined by enumerating the set of observed covariances and assigning
one neuron to each pattern, but this approach presents two problems.
First, local image classes are not known a priori. Second, given the
limited number of neurons in the visual system, it is not feasible to
represent all possible image types, let alone the combinatorial number
of possible image boundaries. Instead, we propose a distributed code
in which the graded activity of the neural population acts to describe a
continuum of potential covariance patterns.

This distribution coding model is illustrated schematically in Fig. 2.
The model represents the correlations present in local image regions
with a multivariate Gaussian distribution that has a fixed mean of
zero and a covariance that is a function of the neural activity (see

Methods). This simple statistical description affords both the flex-
ibility to capture a continuum of natural image distributions and
mathematical simplicity for tractable parameter estimation. The
model uses two sets of parameters to describe correlations in image
distributions. First, the vectors bk (arrows within circles) specify
image features along which the encoded distribution can be
expanded or contracted relative to the canonical distribution (black
circle). These vectors are shared by all neurons in the model (repre-
sented by the four grey circles, each of which contains the same set of
arrows). Because these vectors do not necessarily line up with the axes
of the input dimensions, changes in variation along a vector can
correspond to changes in the correlational pattern in many dimen-
sions at once. Neurons in the model (yj) describe changes along these
directions using weights wjk: each has a different set of weights, cor-
responding to an expansion or contraction along feature bk. A pos-
itive weight (red) means that the neuron responds to a wider range of
stimuli along that direction, a negative weight (blue) means it
responds to a narrower range, and a weight close to zero (grey)
indicates that the neuron is neutral to this direction. The combined
activation of all neurons specifies the final shape of the encoded
distribution (ellipses). Given a single fixation—one input image—
the model computes the neural representation (that is, the image
distribution) that provides the most probable explanation of the
input. The model is able to generalize over different image regions
if the inferred representation is similar across a region (for example,
for the pairs of patches in Fig. 2).

By adapting model parameters bk and wjk to the data, we are able to
find the most efficient way to use a limited number of neurons to
describe the wide range of distributions observed in natural images. It
should be noted that, although our goal is to derive a stable repres-
entation of all patches within a local region, no assumptions about
locality are made (encoding is done independently for each image
patch). It is the task of the model to learn a compact representation of
all patches and to automatically discover which share the statistical
properties of a particular type.

If, as hypothesized, neurons in the visual cortex encode patterns in
correlations in local regions and are adapted specifically to the stat-
istics of natural scenes, we expect the representations learned by the
model to reflect properties of visual neurons. To this end, we trained
the model on patches sampled from a large set of natural images and
examined the resulting parameters as well as the response properties
of model neurons to natural images.

The vectors bk encode the directions of common expansion or
contraction in the shape of the image distribution. Drawn as image
patches, each is an oriented and localized edge-like feature. The full
set tiles the spatial extent of the image patch (Fig. 3a) and spans the
range of orientations and spatial frequencies of natural images (not
shown). These oriented, band-pass image features are consistent with
the optimal images for exciting simple cells in the primary visual
cortex18,19. Similar representations have been derived previously
using linear statistical models that maximize the efficiency of the
image codes16,17. In the model proposed here, however, these features
are not used explicitly to reconstruct the original image, but instead
function to modify the encoded distributions (arrows in Fig. 2).
Thus, whereas the traditional interpretation of early sensory codes
is that they are adapted for faithful reconstruction of the stimulus,
our results suggest an additional interpretation: they convey varia-
tions in image distributions and allow downstream visual areas to
form more abstract representations.

The second set of parameters, the weights wjk, describes the role of
each neuron in shaping the encoded image distribution. A set of
learned weights for a typical model neuron is shown in Fig. 3b.
This neuron exerts the strongest effect on features in the top left of
the image patch, increasing the variability (that is, activation) of
those oriented at its ‘preferred’ orientation of 45u, decreasing the
variability of those at the orthogonal orientation, as well as those at
the preferred orientation but at an offset location. Rather than

Figure 2 | Distribution coding model. Rather than encoding the precise
pixel values of an input image (bottom), the proposed model infers for each
image the most likely distribution (ellipses) containing it. Activation
patterns for model neurons are shown at the top of each column. Absence of
activity corresponds to the lack of image structure (left panel)—that is, a
canonical distribution that reflects the statistics over all natural images
(black circle). Increased neural activity represents deviations from this
canonical distribution and captures statistical patterns in local image regions
(middle and right panels, patches and symbols as in Fig. 1). In each panel, the
activation pattern is the same for both inputs. See text for further details.
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responding to a few excitatory or suppressive image features, the
neuron integrates a large number to describe a pattern of variability
underlying a particular image distribution. Although the functional
significance of these subunits is to modify the statistical structure of
the encoded distribution, they also reflect stimulus features to which
this model neuron is most sensitive. It should be noted that a model
neuron is activated by all images from this distribution, rather than
signalling the presence of one best stimulus. Conversely, stimuli that
lie in parts of image space assigned low probability by the neuron
inhibit its activity.

To compare the behaviour of the model neuron to that of cells in
the visual cortex, we tested its response to stimuli used in classical

physiological experiments (sinusoidal gratings). Model parameters
were fixed after training on natural images, and neural response
computed on a set of patterns centred in the visual area that evoked
maximal response. This particular model neuron showed a variety of
properties observed in complex cells in V1 and cells in V2, including
phase invariance, orientation tuning and complex suppressive effects
(Fig. 3c). A large subset of the population exhibits similar properties,
whereas others encode more complex patterns that have been
observed in higher visual areas V2 and V4 (a detailed analysis of
the population and similarities to other experimental data are pro-
vided in the Supplementary Information). We emphasize that these
results, as well as image features described in Fig. 3a, were obtained
with no assumptions about the image structure encoded by visual
neurons and without fitting a model to data from physiological
experiments. Specifically, we did not restrict the encoded image fea-
tures to be localized and oriented, nor did we prescribe in advance
how the subunits are to be combined in the pattern represented by
each neuron.

Finally, we looked at the way in which the model uses the popu-
lation of neurons to represent images. If the model is able to general-
ize across the wide variability present in natural images, then image
patches that are widely scattered in the original space of linear fea-
tures should be tightly clustered in the space of the model’s repres-
entation. This can be illustrated by projecting into two dimensions
(as was done with image space in Fig. 1) the model representation of a
collection of images (Fig. 4). As hypothesized, by encoding image
distributions rather than the precise feature content of each image,
model neurons are able to encode perceptually similar images with
similar representations and to separate distinct image types.

One limitation of the statistical framework used here is that it does
not furnish an explicit feed-forward algorithm for neural encoding.
Nevertheless, it is possible to approximate inference in the model by a
sequential feed-forward computation: a neuron integrates the
squared responses of a large number of image features bk and corre-
lates the pattern against its weights wjk (see Supplementary
Information for details). This computation can be viewed as a gen-
eralization of the standard model of complex cells, in which each
complex cell takes as input the squared output of two simple
cells9,10,20,21. In contrast, model neurons can receive many inputs,
and the linear features themselves are learned. We find that the
optimal number of input features varies greatly, and the features
are integrated in a variety of ways. These predictions are consistent
with recent analyses of functional subfields in V1 complex cells6,22. In
addition, some model neurons integrate more complex spatial pat-
terns (see Supplementary Information), which predicts a neural res-
ponse to a richer variety of images than has been tested
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Figure 3 | Model neurons exhibit properties of cortical visual neurons.
a, When adapted to natural images, the vectors bk are oriented, localized in
space, and span the spatial extent of the 20 3 20-pixel image patch. Each line
reflects the orientation, spatial position within the image patch, and scale
(length of line) of one of the image features. Twenty-five representative
features (from a total of 1,000) are drawn in black, and shown in image form
on the right. b, Weights of one typical model neuron to the features bk. As in
a, each feature is represented by a line, and the colour of the line indicates the
sign and magnitude of the weight to the feature (see colour bar). Positive
weights indicate increased variability in the corresponding feature; negative
weights indicate decreased variability; features to which the neuron is
insensitive are shaded grey. Image features (bk) corresponding to the five
most positive and the five most negative weights are shown in the right panel;
the corresponding weights are above each feature. These act as excitatory
and inhibitory subunits for this neuron. c, When presented with sinusoidal
gratings, this model neuron replicates common aspects of the neural
response in complex cells in cortical area V1. It is highly tuned to the
grating’s orientation, but insensitive to its phase. Adding a grating into the
surrounding region suppresses the response (third plot, 0u) relative to
baseline response to a single grating (asterisk), but this suppression is tuned
to the orientation of the surround and is weakest when the surround is
orthogonal to the preferred orientation (90u). Masking with a superimposed
orthogonal grating suppresses the response (fourth plot, 90u), but this
suppression is also orientation-dependent. All model neuron responses are
plotted on the same scale (red axis); cell firing rates in each plot were
normalized to a maximum value of 1; preferred orientation was shifted to 0u
for the model neuron and the cell in all plots.
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Figure 4 | Generalization across natural variability. a, In contrast to linear
projections (compare to Fig. 1b), a two-dimensional projection of the
model’s representation (the activity of 150 model neurons) reveals well-
separated clusters. b, Each 3 3 3-image group corresponds to the array of
symbols in a. Despite the variability in the appearance of edges and textures,
the model’s representation of natural images generalizes within each region
while still distinguishing among them.
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physiologically. Experiments that incorporate such stimuli will pro-
vide an important validation of the proposed model.

The nonlinear effects shown by neurons in the model (Fig. 3c) have
been previously incorporated into models of complex cells5,8,20,21.
Much of this work has focused on fitting mathematical models to
neural data5,8,20,23 and does not provide a functional explanation of
the observed neural properties. Other models have been motivated by
specific computational goals, such as statistical independence24,25,
stability of representation over time26,27, or position or scale invari-
ance28. However, these models do not explicitly address the problem
of generalization, which here is performed by inferring the statistical
distribution that is most likely to explain the input image. An import-
ant advantage of our approach is that, rather than assuming invari-
ance (or sensitivity) to limited stimulus parameters such as position
or orientation, the model learns a much more general set of features
that are determined by the statistical structures in natural images. If
higher-level visual neurons are generalizing according to these stat-
istics, they should have invariance along specific stimulus dimen-
sions, and their responses to natural images should reflect
common statistical structure in local image regions. Thus, the model
provides a quantitative way to explore neural responses to complex
stimuli characterized by their statistical regularities.

METHODS SUMMARY

The model describes individual image patches x with multivariate Gaussian

probability distributions:

P x yjð Þ~N m, Cð Þ ð1Þ
with mean m 5 0 and with covariance a function of the neural encoding vector

C 5 f(y). The logarithm of the covariance matrix is given by the combination of

outer products of feature vectors bk, weighted by neural activities yj through

weights wjk:

log C~
X

jk

yjwjk bk bT
k ð2Þ

Because a different covariance can be inferred for each image, the distribution

over the entire ensemble of images is highly non-Gaussian. (This model is a

generalized version of the hierarchical model described previously29, which cap-

tured patterns among the variances, but not the correlations, of linear features.)

We trained the model on a large set of 20 3 20 image patches, sampled ran-

domly from greyscale photographs of outdoor scenes19. The number of neurons

was set to 150 and the number of linear features bk to 1,000. The ‘response’ of

model neurons was computed as the most probable neural representation given

the input image by maximizing the posterior probability P(yjx, {bk,wjk}). Model

parameters were initialized to small random values and optimized by maximiz-

ing the likelihood of the data under the model P(xj{bk,wjk}) using standard

gradient ascent.

For the ‘physiological’ analysis of Fig. 3c, we first identified the location,

orientation, and spatial extent and frequency of a windowed sinusoidal grating

that best activated the model neuron (one that yielded the most positive value of

yj). We then varied each tested parameter and computed the model’s representa-

tion of the stimulus (the vector of responses of model neurons).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Data. We used 110 greyscale images of outdoor scenes as training data19. Pixel

intensities were log-transformed (corresponding roughly to the transformation

at the retinal cone cells30), and the images were low-pass filtered to remove corner

frequency sampling artefacts. We randomly extracted overlapping 20 3 20-

image patches from the entire data set. The mean luminance value was sub-

tracted from each patch (which sped up model training but had no significant

influence on the results). We ‘whitened’ all image patches to remove global

correlations and to normalize the variance; this allowed the model to encode

only the deviations of each image distribution from the global statistics (the
canonical distribution). For visualization of image features, the results were

projected back into the original image space. All stimuli in the physiological

analysis of Fig. 3c were preprocessed in the same way as the natural images used

in training.

Model parameter estimation. We estimated the optimal model parameters

h 5 {bk,wjk} by maximizing the likelihood of the data under the model

P x hjð Þ~
ð

P x y, hjð ÞP yð Þdy ð3Þ

The conditional distribution P(xjy, h) is a multivariate Gaussian that captures

correlations in local image regions (equation (1)). Neural activities were

assumed to be sparse31 and independent, and were modelled with a Laplacian

(symmetric exponential) distribution, P yð Þ~PP yj

� �
!Pe{ yjj j. The integral

over all possible neural states in equation (3) is intractable and was replaced

by a single evaluation at the maximum a posteriori value ŷy~arg maxy P y xj , hð Þ.
Although this approximation ignores the volume around the maximum, it is one

standard approach to tackling this problem.

We assumed the training patches were sampled independently and that the

likelihood for the data ensemble was a product of terms for individual images

(equation (3)). In practice, we maximized the log-likelihood using gradient

ascent on batches of 100 image patches. Repeated training runs produced con-

vergence to similar parameter values.

Model responses to grating stimuli. The orientation tuning of model neurons

in Fig. 3c was measured using 20 3 20 patches of sinusoidal gratings at different

positions, orientations, spatial frequencies and phases. We first eliminated neu-

rons that were ‘unresponsive’ to gratings, that is, those whose maximal response

did not reach 2 standard deviations of the population response to gratings. This

was necessary to discount small random activation of neurons tuned for other

types of image structures. For each neuron we found the grating with the max-

imal response and measured modulation in response to varying orientation,
phase, or the addition of masks in the receptive field or the surround. Because

neural activity could be positive or negative, the full amplitude of modulation

was considered as twice the maximum absolute value of the response.

A neuron was considered to be orientation-tuned if its response was modu-

lated by more than 50% over the range of stimulus orientations, and to be phase

invariant if the response varied less than 50% over phase-shifted gratings. Cross-

orientation inhibition and surround suppression corresponded to greater than

25% decrease in neural response. Bandwidth of orientation tuning was com-

puted as the width at 1
� ffiffiffi

2
p

of the full amplitude of the response modulation.

The projection of neural activity in Fig. 4 was computed using linear discrim-

inant analysis, a technique that finds the linear projections that best separate

different classes of data. Applied to the raw pixel data or to the outputs of linear

features (data shown in Fig. 1), this method failed to separate the clusters.

30. van Hateren, J. H. Processing of natural time series of intensities by the visual
system of the blowfly. Vision Res. 37, 3407–3416 (1997).

31. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin.
Neurobiol. 14, 481–487 (2004).

doi:10.1038/nature07481

 Macmillan Publishers Limited. All rights reserved©2009

www.nature.com/doifinder/10.1038/nature07481
www.nature.com/nature
www.nature.com/nature

	Title
	Authors
	Abstract
	Methods Summary
	References
	Methods
	Data
	Model parameter estimation
	Model responses to grating stimuli

	Methods References
	Figure 1 Statistical patterns distinguish local regions of natural scenes.
	Figure 2 Distribution coding model.
	Figure 3 Model neurons exhibit properties of cortical visual neurons.
	Figure 4 Generalization across natural variability.

