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problems, they have several attractive features that make 
them candidates for implementing synaptic memory in 
intelligent machines:2

•• their resistance is generally nonlinear, and circuitry 
can alter it electrically; 

•• they can be packed into crossbars to form dense 
memories; and 

•• many memristive materials are compatible with 
CMOS processes. 

The last characteristic is significant because it means 
that designers can integrate dense, memristive memo-
ries with conventional circuitry3 and thus place memory 
and computational circuits closer together. The decreased 
distance significantly reduces the power dissipation in 
sending and receiving information between the two com-
ponents while increasing the data bandwidth between 
them.

To bootstrap the process of building intelligent hard-
ware, Hewlett-Packard and Boston University are jointly 
developing the Cog Ex Machina hardware architecture 
along with Cog, a software framework that runs on top of 
it. Together, the two provide a low-cost, flexible all-digital 
platform for building large brain models that can interact 
with a simulated or real environment in real time. 

Although the platform does not yet achieve the goals 
of intelligent behavior and biological-scale power and 
volume, it does offer a way for researchers to build 

B uilding an electronic brain is daunting, in large 
part because researchers have only the faint-
est notion of how to do it. Indeed, in light of the 
biological-scale constraints on power dissipation 

and volume (roughly 20 W stuffed into a shoebox), the task 
seems well beyond current technology. 

Consider, for example, one dimension of the problem: 
how to translate synapses into their electronic equivalent. 
Biological synapses are dense—the cortex needs roughly 
1010 synapses per square centimeter. They also consume 
miniscule power; have complex, nonlinear dynamics; and, 
in some cases, can maintain their memory for decades. 
Until recently, these characteristics translated to one more 
unreachable goal for those aspiring to build electronic 
brains, particularly large models.

In the past few years, however, work on memristive 
devices1 has gained momentum, which could bring de-
signers closer to an electronic brain architecture that can 
adaptively interact with the world in real time. Although 
memristive devices alone don’t solve power and volume 

In a synchronous digital platform for build-
ing large cognitive models, memristive 
nanodevices form dense, resistive memo-
ries that can be placed close to conventional 
processing circuitry. Through adaptive 
transformations, the devices can interact 
with the world in real time.
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models quickly and at relatively low cost and to adapt 
the platform to fit new algorithms. In addition, Cog  
effectively abstracts away the details of the underlying 
hardware, so researchers can continue building models 
on the platform as the underlying hardware technology 
advances.

HARDWARE ARCHITECTURE
As Figure 1 shows, Cog Ex Machina’s hardware archi-

tecture comprises multicore hardware accelerators for 
inference and learning. Because the platform has a digital 
hardware foundation, fabrication risk is low, and users 
are free to implement a wide variety of neuromorphic 
algorithms. The “Analog versus Digital Platforms for Neu-
romorphic Computing” sidebar describes the limitations 
of an analog approach relative to our platform. We cur-
rently use off-the-shelf graphical processing units (GPUs) to 
implement the accelerators, but we plan to transition these 
to Dendra chips, which are massively parallel processor 
chips that integrate hundreds of cores with memristive 
memory banks to reduce power and area by several orders 
of magnitude. Each accelerator, whether GPU or Dendra 
chip, communicates with other accelerators through a 
photonic network.

Distributed across the accelerators is the Cog software 
framework, which supplies researchers with a set of primi-
tives for building massively parallel neuromorphic models. 
To study how models interact with their environments, 

designers can plug in animats, either software creatures 
embedded in virtual environments or robots built from 
actuators and cameras, touch sensors, or accelerometers, 
enabling the model to interact with the real world in real 
time. Many robotic applications are possible (such as a 
robot quickly searching for trapped people, hazards, or 
hotspots before the fire department enters a burning build-
ing), but nearly any machine with a nontrivial interface 
(cell phones, remote controls, cars) could benefit from 
embedded intelligence.

Power
With the continuing reduction in CMOS feature size, 

capacitive signaling losses in the wiring are increasingly 
dominating a chip’s power budget. These losses are of 
particular concern in cognitive architecture design be-
cause the brain’s wiring is 3D and extremely dense.4,5 

Moreover, brain computation is massively parallel, reading 
and modifying enormous amounts of memory (synapses) 
continuously. In light of these complexities, to minimize 
signaling losses, designers have little choice but to place 
dense, low-power memory very close to the computational 
circuits that read and write it. The memristive memory 
we are developing for our Cog Ex Machina architecture 
enables us to do exactly that.

Dendra chip
The Dendra chip is a tiled array of transform engines, 

each of which includes a simple processor and a large bank 
of memristive memory built from dozens of memristive 
crossbars. Transform engines intercommunicate through 
a fabric on-chip, and over a network between chips. Each 
transform engine typically reads and modifies its entire 
memory bank every 10 ms, so designers must keep wires 
as short as possible to minimize power consumption.

SOFTWARE ARCHITECTURE
Cog users express a brain model as an arbitrary, di-

rected graph, such as that in Figure 2. The nodes hold 
computational state and exchange information through 
edges. All nodes execute one computational step in 
parallel and then pass messages through edges before ex-
ecuting the next computational step. The graph is clocked 
at 100 Hz for real-time applications, allowing each node 
10 ms to complete its computation and communication 
at each clock step.

An edge relays information from one node to an-
other using a tensor field—a discrete, multidimensional 
array of tensors. Each tensor, in turn, is a multidimen-
sional numerical array (scalar, vector, dyad, and so on). 
Computational nodes implement adaptive transforma-
tions that use incoming tensor fields to produce output 
tensor fields on outgoing edges. The transfer function 
varies over time because an adaptive transformation 
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Figure 1. High-level view of the Cog Ex Machina platform. The 
hardware consists of accelerator nodes, currently GPUs but 
eventually Dendra chips, which communicate through a pho-
tonic network. Researchers build abstract brain models on the 
Cog software platform. Cog hides the underlying hardware, 
allowing brain models to run on many hardware implementa-
tions. Brain models use Cog to interact with the real world 
through robotic sensors and actuators or with a virtual world 
using a software animat.
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can change its internal state as a function of its inputs’ 
history, such as feedback from other transformations 
that it drives.

Adaptive transformations are either linear or nonlin-
ear. Linear transformations, which make up more than 99 
percent of the computation, implement a form of tensor 
convolution that extracts subfields from input tensor fields 
and then multiplies or contracts those subfields with in-
ternal tensor kernels to produce output tensor fields. The 
kernels can vary over the field and can self-modify their 
internal state through learning laws such as Hebb rule 
derivatives. Because linear transformations are com-
putationally regular, parallel hardware can efficiently 
implement them.

Although nonlinear transformations constitute less than 
1 percent of the total computation in most models, they 
implement essential irregular functions and nonlinear 
dynamics, transforming one or more input tensor fields 
to output tensor fields. Through outgoing tensor fields, 
they can supply feedback to guide learning in the linear 
transformations connected to their inputs. And, because 
they hold state, they can also adapt and have time-varying 
transfer functions. 

Each adaptive transformation, whether linear or non-
linear, is itself a massively parallel computation. Cog 
automatically maps these computations onto the under-
lying platform. If a single core is all that’s available, Cog 

time-multiplexes all computation on that core. If a single 
multicore CPU is available, Cog spreads the computation 
across the cores. When faced with a mix of CPUs, GPUs, 
and Dendra chips across a network, Cog maps the linear 

Adaptive
transformation

Tensor �eld

SensorActuator

Figure 2. Building a brain model in Cog. Models are directed 
graphs of adaptive transformations that execute concurrently, 
exchanging information through tensor fields. Computation is 
deterministic and race free.

ANALOG VERSUS DIGITAL PLATFORMS FOR NEUROMORPHIC COMPUTING

A nalog neuromorphic computation using subthreshold CMOS1 

offers a potentially power-efficient path for solving the 
nonlinear differential equations that pervade many neural models. 
Several ongoing neuromorphic hardware projects such as Stanford’s 
Brains in Silicon project,2 Fast Analog Computing with Emergent 
Transient States (FACETS),3 and IBM’s SyNAPSE project4 continue this 
tradition.  

Despite the potential power advantages, analog computation 
carries risk. Because much of the neural dynamics are hardwired in 
the analog circuitry, an analog platform is not very flexible. In addi-
tion, its operation has a fixed time scale,3 and computation is 
nondeterministic because of device variation and parasitics. Finally, 
the fabrication technology is hardly mainstream in a digitally domi-
nated industry.

In addition, learning in analog neuromorphic architectures is 
often restricted to one or at most a few learning laws, with spike-
timing-dependent plasticity (STDP) being the most popular. 
However, it is not at all clear that STDP is either necessary or suffi-
cient to implement the wide variety of processing in brains. Systems 
that use dynamical nanodevices, such as the memristive devices we 
have developed for analog synaptic memories, also face challenges 
in stabilizing those memories to deal with noise and system 
dynamics.

Digital computers, on the other hand, are mainstream, algorith-
mically flexible, and stable, but they are inefficient at numerical 
integration. In other words, digital computers are very good at alge-

bra but not so good at mathematical analysis. We are addressing this 
dilemma by combining a digital hardware platform with algorithmic 
transformations that recast neural algorithms from the analysis 
domain to the algebraic domain. Both the contrast normalization 
and boundary completion examples illustrate this. In each case, the 
original neural algorithm was expressed with differential equations, 
but was implemented with Cog using a transformation to a noniter-
ative algebraic algorithm. It is unknown how well this approach will 
work in general—it is a risk. However, we feel that the flexibility and 
reduced fabrication risk of a software digital platform adequately 
compensates for any downside. 
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transformations onto the regular computational engines 
(GPUs, Dendras), maps nonlinear transformations onto 
the CPU cores, and implements tensor field communica-
tion through local memory or through messages passed 
across the network.

None of these platform attributes are visible to users, 
which frees them to focus on their cognitive models. 
Adding computational resources either speeds up model 
execution or, in a real-time environment, increases the size 
of the model that Cog can execute.

These abstractions might seem distant from their bio-
logical counterparts, but a rough correspondence exists. 
Tensor fields moving along the graph edges are similar 
to the information that axon bundles convey in a human 
nervous system. Linear transformations are analogous 
to the computation performed in the dendritic trees of 
neuron populations, with the learning or adaptation anal-
ogous to the modifications of synaptic weights. This is the 
storage of long-term memory. Nonlinear transformations 
correspond to the nonlinear dynamics of populations of 
neuron bodies or somas—the storage of medium- and 
short-term memories.

Learning
Linear transformation adaptation generally occurs over 

a much longer time scale relative to nonlinear transfor-
mations, and this slower adaptation is what constitutes 
learning. As Figure 3 shows, feedback from a nonlinear 
transformation guides learning. Cog holds the actual 

learned state, W, within a linear transformation. It then 
convolves or correlates W with an input, x (part of a tensor 
field), to produce an output tensor field, y. We call this a 
partial inference. Cog uses the partial inference to drive a 
nonlinear transformation, which can respond by feeding 
back a learning field, g, to the linear transformation. The 
linear transformation uses g, x, and W (its current state) to 
update its learned state.

Through configuration and appropriate feedback,6 we 
can implement a wide variety of classical learning laws, 
which fall into four categories:

•• Hebb rule derivatives, including classic Hebbian, Hebb 
plus passive decay, presynaptically gated decay (out-
star), postsynaptically gated decay (instar), Oja, dual 
OR, and dual AND;

•• threshold-based rules, including Covariance 1, Covari-
ance 2, BCM (Dayan and Abbott), original BCM (oBCM), 
IBCM, and Bienenstock, Cooper, and Munro (BCM) 
theory (Law and Cooper);

•• feedback-based rules, including back-propagation, 
Harpur’s rule, and contrastive divergence; and 

•• temporal-trace-based rules, including Rescorla Wagner, 
temporal difference, and Foldiak.

Development environment
Brains interact with environments, receiving informa-

tion from sensors and conveying motor commands so 
that the bodies they govern can move about and affect 
the world around them. To make development easier, 
Cog offers a set of virtual environments with which brain 
models can interact. The environments, which vary in 
complexity, run synchronously with the brain model.

Because Cog is a synchronous, digital architecture, 
users can halt and restart model execution without per-
turbing the computation, so that they can peek inside their 
model and debug it if necessary. If enough computational 
resources are available, Cog can run faster than real time 
in a virtual environment.

Figure 4 is a screenshot of the graphical user interface 
(GUI) in the Cog debugger. The left side of the screen shows 
a graph of the network being debugged; in this case, a 
feed-forward network is implementing a simple form of 
boundary completion. The user can click on various points 
within that model to view its internal state, which the GUI 
displays on the right side.

BUILDING APPLICATIONS
Cog can implement a wide range of neuromorphic al-

gorithms. To give an idea of Cog’s capabilities, we describe 
four small applications that we built using our framework: 
contrast normalization, independent component analysis, 
learning of orientation maps with ocular dominance, and 
boundary completion. 

Nonlinear
transformation

W

x

Partial
inference, y

Learning
feedback, g

Linear 
transformation 

Partial inference:  
y = W • x 

Adaptation:  
W = W + f(x, W, g)

Figure 3. How learning occurs. Linear and nonlinear transfor-
mations cooperate to implement the learning that corre-
sponds to long-term memory. Cog combines a linear trans-
formation’s current state, W, with the input, x, to produce y, a 
partial inference. It then combines g, x, and W to implement 
learning. The learning function, f, determines the type of 
learning that occurs.
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Contrast normalization
Figure 5 illustrates contrast normalization using the 

Retinex algorithm7 as implemented with Cog. The image 
in the figure is of a parking garage, which contains a 
dynamic range that a camera cannot capture in all its 
detail, but that a human eye can. In Figure 5a, standard 
photographic compression loses detail in the brightest 
and darkest regions. However, one linear and one non-
linear transformation on Cog can easily implement the 
Retinex algorithm, which approximates retinal process-
ing, to capture detail in both shadow and glare. Figure 
5b shows the dramatic difference. Filtering is clearly 
nonlocal, since the brightest areas in the original image 
do not always correspond to the brightest areas in the 
processed image. This early preprocessing is essential 
for handling the real-world video streams that the brain 
model receives as input.

Independent component analysis
Scientists believe that most of the information in natural 

images is contained in the scene’s edges8 and that edge fil-
ters can capture and compress that information to simplify 
later processing. Figure 6 shows an example of a model 
built with Cog that uses BCM theory to learn the indepen-
dent components of natural scenes.

In the application, a simple network implemented on 
Cog uses three transformations in series to approximate 
early processing in the visual system. The first transfor-
mation enhances edges using a difference-of-Gaussians 

Figure 5. Contrast normalization of a high-contrast scene in 
a parking garage. (a) Standard photographic compression 
(.jpeg) of the scene loses details in deep shadow and bright 
regions. (b) The Retinex algorithm as implemented with Cog 
recaptures the details while maintaining local contrast.  
(Image data courtesy of R. Brinkworth and D. O’Carroll, “ 
Robust Models for Optic Flow Coding in Natural Scenes  
Inspired by Insect Biology,” PLoS Computational Biology, 
vol. 5, no. 11; www.ploscompbiol.org/article/info%3Adoi% 
2F10.1371%2Fjournal.pcbi.1000555;jsessionid=4BEF883BF3 
CAA0B158302B10E2E74AA1.ambra02).

Figure 4. Debugging with Cog. (left) The GUI displays the network structure, which the user is probing to display the internal 
state of some of the model’s adaptive transformations. (right) Each window names the adaptive transformation being displayed. 
The bottom two windows show snapshots of the tensor fields generated and transmitted by two of the network transforma-
tions, while the top window displays a history of a single state variable within a third transformation.

(b)

(a)
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filter. The second, a linear transformation, applies con-
volution with adaptive kernels that implement simple 
Hebbian learning. Finally, the third transformation imple-
ments a competitive field of BCM theory neurons.9 Random 
patches from natural images (photographs of trees, grass, 
fields) drive the first layer, and the last two layers respond 
by adapting to their inputs. The resulting network self- 
organizes into a set of edge filters, shown in the figure, that 
react strongly to edges (the “independent components” of 
natural scenes) in visual inputs (approximating simple cells 
in the V1 cortical region of the vision system). 

Orientation maps and ocular dominance  
Experiments show that simple cells (neurons) in the V1 

area of the visual cortex behave as edge filters and that the 
orientation of those edge filters varies smoothly over the 
surface of V1. Experiments also show that V1 cells receive 
visual input information from both eyes, but that signals 
from only one eye dominate any given cell. This ocular 
dominance organization occurs in clumps or bands, de-
pending on the species.

Figures 7 and 8 illustrate a Cog model of the self-organi-
zation of V1 for both orientation and ocular dominance. In 
this example, we input a series of random images, heavily 
filtered to form blob-like images.10 We then topographi-
cally connected two views of the image, simulating two 
eyes, to the simulated V1. Figure 7 shows the resulting self-
organization of the orientation filters, and Figure 8 shows 
the resulting ocular dominance clumping.

Boundary completion 
A person can easily recognize visual objects even when 

noise or foreground objects obstruct or partially occlude 
them. People somehow infer the missing information and 
fill in the scene to form completed percepts—presumably 
to facilitate recognition in later cortical stages. Boundary 
completion, a simple form of this filling-in process, com-

Figure 6. Learning independent components of natural 
scenes. A network built with Cog for learning independent 
components preprocessed random patches from natural 
scenes using a difference-of-Gaussians filter and then pro-
cessed that output using the BCM neuron model combined 
with Hebbian learning. The result was the learning of the 16 
Gabor-like edge filters shown.

Figure 7. Topographic map of orientation selectivity. (a) Be-
fore learning, there are no identifiable clusters of orientation 
selectivity. (b) Clusters emerge after learning, with different 
colors denoting particular orientations.

(b)(a)

Figure 8. Topographic map of ocular dominance. (a) Before 
learning, there are no identifiable columns of ocular domi-
nance. (b) Columns emerge after learning, with white denot-
ing left eye, black denoting right eye, and gray denoting 
intermediate.

(b)(a)

 Figure 9. Simple boundary completion. (a) A noisy figure 
with a broken line and broken circle becomes (b) smooth and 
filled in using a boundary completion algorithm implemented 
with Cog.

(b)(a)



27FEBRUARY 2011

pletes broken and curved edges and lines using the Gestalt 
principles of proximity and good continuation.

Although a self-organizing boundary-completion model 
exists, it is computationally expensive to learn.11 We found 
it much cheaper simply to prewire the mechanism into a 
Cog-built model. The model can then exploit a vast number 
of mathematical tricks, such as steerable filters, fast Fou-
rier transform, tensor convolution, and data compression.12 
Relative to the traditional boundary completion model,13 
a Cog-built model with this mechanism can reduce imple-
mentation energy by at least four orders of magnitude.

Figure 9 shows the input and output of a Cog-built model 
that implements a simple form of boundary completion. In 
this example, the user has implemented the feed-forward 
network in Figure 4 to complete the noisy input image of 
a broken circle and broken line.

A lthough a general theory of cognition does not 
yet exist, researchers do recognize that platform 
flexibility is essential as they plow through the fog 

and uncertainty of learning to build intelligent machines. 
Cog has many features that offer this flexibility. Its all-
digital hardware foundation reduces technological and 
fabrication risk. Its placement of memristive synaptic 
memory banks close to their associated processing ele-
ments reduces CV2f power losses by several orders of 
magnitude—a reduction critical in processing neuro-
morphic algorithms, which deeply entangle memory and 
computation.

Cog’s tensor framework mechanisms are perhaps non-
biological, but they are well-matched to our underlying 
CMOS/memristive technology. The framework is also ex-
pressive, pulling in linear algebra, geometry, and analysis 
into a single foundation, and enables exploitation of much 
mathematical and engineering knowledge—for example, 
information and coding theory, digital signal processing, 
non-Euclidean coordinate systems, tensor convolution, 
normalized convolution, and fast Fourier transforms, 
among many others. The framework also supports a wide 
variety of learning laws and network models.

Perhaps the most important architectural attribute 
is the nearly complete decoupling of the software ab-
stractions for building brains (tensor fields and adaptive 
transformations) from the underlying hardware platform. 
Not only does this provide portability among existing and 
future platforms, it allows us to quickly modify the soft-
ware architecture to accommodate new or unexpected 
algorithmic problems as they arise. 
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