
COVER FE ATURE

21FEBRUARY 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE	

problems, they have several attractive features that make
them candidates for implementing synaptic memory in
intelligent machines:2

•• their resistance is generally nonlinear, and circuitry
can alter it electrically;

•• they can be packed into crossbars to form dense
memories; and

•• many memristive materials are compatible with
CMOS processes.

The last characteristic is significant because it means
that designers can integrate dense, memristive memo-
ries with conventional circuitry3 and thus place memory
and computational circuits closer together. The decreased
distance significantly reduces the power dissipation in
sending and receiving information between the two com-
ponents while increasing the data bandwidth between
them.

To bootstrap the process of building intelligent hard-
ware, Hewlett-Packard and Boston University are jointly
developing the Cog Ex Machina hardware architecture
along with Cog, a software framework that runs on top of
it. Together, the two provide a low-cost, flexible all-digital
platform for building large brain models that can interact
with a simulated or real environment in real time.

Although the platform does not yet achieve the goals
of intelligent behavior and biological-scale power and
volume, it does offer a way for researchers to build

B uilding an electronic brain is daunting, in large
part because researchers have only the faint-
est notion of how to do it. Indeed, in light of the
biological-scale constraints on power dissipation

and volume (roughly 20 W stuffed into a shoebox), the task
seems well beyond current technology.

Consider, for example, one dimension of the problem:
how to translate synapses into their electronic equivalent.
Biological synapses are dense—the cortex needs roughly
1010 synapses per square centimeter. They also consume
miniscule power; have complex, nonlinear dynamics; and,
in some cases, can maintain their memory for decades.
Until recently, these characteristics translated to one more
unreachable goal for those aspiring to build electronic
brains, particularly large models.

In the past few years, however, work on memristive
devices1 has gained momentum, which could bring de-
signers closer to an electronic brain architecture that can
adaptively interact with the world in real time. Although
memristive devices alone don’t solve power and volume

In a synchronous digital platform for build-
ing large cognitive models, memristive
nanodevices form dense, resistive memo-
ries that can be placed close to conventional
processing circuitry. Through adaptive
transformations, the devices can interact
with the world in real time.

Greg Snider, Rick Amerson, Dick Carter, Hisham Abdalla, and Muhammad Shakeel Qureshi
Hewlett-Packard Laboratories

Jasmin Léveillé, Massimiliano Versace, Heather Ames, Sean Patrick, Benjamin Chandler,
Anatoli Gorchetchnikov, and Ennio Mingolla, Boston University

From Synapses
to Circuitry: Using
Memristive Memory
to Explore the
Electronic Brain

COVER FE ATURE

COMPUTER	22

models quickly and at relatively low cost and to adapt
the platform to fit new algorithms. In addition, Cog
effectively abstracts away the details of the underlying
hardware, so researchers can continue building models
on the platform as the underlying hardware technology
advances.

HARDWARE ARCHITECTURE
As Figure 1 shows, Cog Ex Machina’s hardware archi-

tecture comprises multicore hardware accelerators for
inference and learning. Because the platform has a digital
hardware foundation, fabrication risk is low, and users
are free to implement a wide variety of neuromorphic
algorithms. The “Analog versus Digital Platforms for Neu-
romorphic Computing” sidebar describes the limitations
of an analog approach relative to our platform. We cur-
rently use off-the-shelf graphical processing units (GPUs) to
implement the accelerators, but we plan to transition these
to Dendra chips, which are massively parallel processor
chips that integrate hundreds of cores with memristive
memory banks to reduce power and area by several orders
of magnitude. Each accelerator, whether GPU or Dendra
chip, communicates with other accelerators through a
photonic network.

Distributed across the accelerators is the Cog software
framework, which supplies researchers with a set of primi-
tives for building massively parallel neuromorphic models.
To study how models interact with their environments,

designers can plug in animats, either software creatures
embedded in virtual environments or robots built from
actuators and cameras, touch sensors, or accelerometers,
enabling the model to interact with the real world in real
time. Many robotic applications are possible (such as a
robot quickly searching for trapped people, hazards, or
hotspots before the fire department enters a burning build-
ing), but nearly any machine with a nontrivial interface
(cell phones, remote controls, cars) could benefit from
embedded intelligence.

Power
With the continuing reduction in CMOS feature size,

capacitive signaling losses in the wiring are increasingly
dominating a chip’s power budget. These losses are of
particular concern in cognitive architecture design be-
cause the brain’s wiring is 3D and extremely dense.4,5

Moreover, brain computation is massively parallel, reading
and modifying enormous amounts of memory (synapses)
continuously. In light of these complexities, to minimize
signaling losses, designers have little choice but to place
dense, low-power memory very close to the computational
circuits that read and write it. The memristive memory
we are developing for our Cog Ex Machina architecture
enables us to do exactly that.

Dendra chip
The Dendra chip is a tiled array of transform engines,

each of which includes a simple processor and a large bank
of memristive memory built from dozens of memristive
crossbars. Transform engines intercommunicate through
a fabric on-chip, and over a network between chips. Each
transform engine typically reads and modifies its entire
memory bank every 10 ms, so designers must keep wires
as short as possible to minimize power consumption.

SOFTWARE ARCHITECTURE
Cog users express a brain model as an arbitrary, di-

rected graph, such as that in Figure 2. The nodes hold
computational state and exchange information through
edges. All nodes execute one computational step in
parallel and then pass messages through edges before ex-
ecuting the next computational step. The graph is clocked
at 100 Hz for real-time applications, allowing each node
10 ms to complete its computation and communication
at each clock step.

An edge relays information from one node to an-
other using a tensor field—a discrete, multidimensional
array of tensors. Each tensor, in turn, is a multidimen-
sional numerical array (scalar, vector, dyad, and so on).
Computational nodes implement adaptive transforma-
tions that use incoming tensor fields to produce output
tensor fields on outgoing edges. The transfer function
varies over time because an adaptive transformation

Brain
model

Animat
GP

U/
De

nd
ra

GP
U/

De
nd

ra

GP
U/

De
nd

ra

GP
U/

De
nd

ra

Photonic network

…

World (virtual or real)

Body (sensors or actuators)

Cog framework

Figure 1. High-level view of the Cog Ex Machina platform. The
hardware consists of accelerator nodes, currently GPUs but
eventually Dendra chips, which communicate through a pho-
tonic network. Researchers build abstract brain models on the
Cog software platform. Cog hides the underlying hardware,
allowing brain models to run on many hardware implementa-
tions. Brain models use Cog to interact with the real world
through robotic sensors and actuators or with a virtual world
using a software animat.

23FEBRUARY 2011

can change its internal state as a function of its inputs’
history, such as feedback from other transformations
that it drives.

Adaptive transformations are either linear or nonlin-
ear. Linear transformations, which make up more than 99
percent of the computation, implement a form of tensor
convolution that extracts subfields from input tensor fields
and then multiplies or contracts those subfields with in-
ternal tensor kernels to produce output tensor fields. The
kernels can vary over the field and can self-modify their
internal state through learning laws such as Hebb rule
derivatives. Because linear transformations are com-
putationally regular, parallel hardware can efficiently
implement them.

Although nonlinear transformations constitute less than
1 percent of the total computation in most models, they
implement essential irregular functions and nonlinear
dynamics, transforming one or more input tensor fields
to output tensor fields. Through outgoing tensor fields,
they can supply feedback to guide learning in the linear
transformations connected to their inputs. And, because
they hold state, they can also adapt and have time-varying
transfer functions.

Each adaptive transformation, whether linear or non-
linear, is itself a massively parallel computation. Cog
automatically maps these computations onto the under-
lying platform. If a single core is all that’s available, Cog

time-multiplexes all computation on that core. If a single
multicore CPU is available, Cog spreads the computation
across the cores. When faced with a mix of CPUs, GPUs,
and Dendra chips across a network, Cog maps the linear

Adaptive
transformation

Tensor �eld

SensorActuator

Figure 2. Building a brain model in Cog. Models are directed
graphs of adaptive transformations that execute concurrently,
exchanging information through tensor fields. Computation is
deterministic and race free.

ANALOG VERSUS DIGITAL PLATFORMS FOR NEUROMORPHIC COMPUTING

A nalog neuromorphic computation using subthreshold CMOS1

offers a potentially power-efficient path for solving the
nonlinear differential equations that pervade many neural models.
Several ongoing neuromorphic hardware projects such as Stanford’s
Brains in Silicon project,2 Fast Analog Computing with Emergent
Transient States (FACETS),3 and IBM’s SyNAPSE project4 continue this
tradition.

Despite the potential power advantages, analog computation
carries risk. Because much of the neural dynamics are hardwired in
the analog circuitry, an analog platform is not very flexible. In addi-
tion, its operation has a fixed time scale,3 and computation is
nondeterministic because of device variation and parasitics. Finally,
the fabrication technology is hardly mainstream in a digitally domi-
nated industry.

In addition, learning in analog neuromorphic architectures is
often restricted to one or at most a few learning laws, with spike-
timing-dependent plasticity (STDP) being the most popular.
However, it is not at all clear that STDP is either necessary or suffi-
cient to implement the wide variety of processing in brains. Systems
that use dynamical nanodevices, such as the memristive devices we
have developed for analog synaptic memories, also face challenges
in stabilizing those memories to deal with noise and system
dynamics.

Digital computers, on the other hand, are mainstream, algorith-
mically flexible, and stable, but they are inefficient at numerical
integration. In other words, digital computers are very good at alge-

bra but not so good at mathematical analysis. We are addressing this
dilemma by combining a digital hardware platform with algorithmic
transformations that recast neural algorithms from the analysis
domain to the algebraic domain. Both the contrast normalization
and boundary completion examples illustrate this. In each case, the
original neural algorithm was expressed with differential equations,
but was implemented with Cog using a transformation to a noniter-
ative algebraic algorithm. It is unknown how well this approach will
work in general—it is a risk. However, we feel that the flexibility and
reduced fabrication risk of a software digital platform adequately
compensates for any downside.

References
	 1.	 C. Mead, Analog VLSI and Neural Systems, Addison Wesley Long-

man, 1989.
	 2.	 K. Boahen, “Brains in Silicon”; www.stanford.edu/group/

brainsinsilicon.
	 3.	 J. Schemmel, J. Fieres, and K. Meier, “Wafer-Scale Integration of

Analog Neural Networks,” Proc. Int’l Joint Conf. Neural Networks
(IJCNN 08), IEEE Press, 2008, pp. 431-438; http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=4633828.

	 4.	 R. Ananthanarayanan et al., “The Cat Is Out of the Bag: Cortical
Simulations with 109 Neurons, 1013 Synapses,” Proc. Conf. High-
Performance Computing Networking, Storage and Analysis (SC 09),
ACM Press, 2009; http://doi.acm.org/10.1145/1654059.165412.

COVER FE ATURE

COMPUTER	24

transformations onto the regular computational engines
(GPUs, Dendras), maps nonlinear transformations onto
the CPU cores, and implements tensor field communica-
tion through local memory or through messages passed
across the network.

None of these platform attributes are visible to users,
which frees them to focus on their cognitive models.
Adding computational resources either speeds up model
execution or, in a real-time environment, increases the size
of the model that Cog can execute.

These abstractions might seem distant from their bio-
logical counterparts, but a rough correspondence exists.
Tensor fields moving along the graph edges are similar
to the information that axon bundles convey in a human
nervous system. Linear transformations are analogous
to the computation performed in the dendritic trees of
neuron populations, with the learning or adaptation anal-
ogous to the modifications of synaptic weights. This is the
storage of long-term memory. Nonlinear transformations
correspond to the nonlinear dynamics of populations of
neuron bodies or somas—the storage of medium- and
short-term memories.

Learning
Linear transformation adaptation generally occurs over

a much longer time scale relative to nonlinear transfor-
mations, and this slower adaptation is what constitutes
learning. As Figure 3 shows, feedback from a nonlinear
transformation guides learning. Cog holds the actual

learned state, W, within a linear transformation. It then
convolves or correlates W with an input, x (part of a tensor
field), to produce an output tensor field, y. We call this a
partial inference. Cog uses the partial inference to drive a
nonlinear transformation, which can respond by feeding
back a learning field, g, to the linear transformation. The
linear transformation uses g, x, and W (its current state) to
update its learned state.

Through configuration and appropriate feedback,6 we
can implement a wide variety of classical learning laws,
which fall into four categories:

•• Hebb rule derivatives, including classic Hebbian, Hebb
plus passive decay, presynaptically gated decay (out-
star), postsynaptically gated decay (instar), Oja, dual
OR, and dual AND;

•• threshold-based rules, including Covariance 1, Covari-
ance 2, BCM (Dayan and Abbott), original BCM (oBCM),
IBCM, and Bienenstock, Cooper, and Munro (BCM)
theory (Law and Cooper);

•• feedback-based rules, including back-propagation,
Harpur’s rule, and contrastive divergence; and

•• temporal-trace-based rules, including Rescorla Wagner,
temporal difference, and Foldiak.

Development environment
Brains interact with environments, receiving informa-

tion from sensors and conveying motor commands so
that the bodies they govern can move about and affect
the world around them. To make development easier,
Cog offers a set of virtual environments with which brain
models can interact. The environments, which vary in
complexity, run synchronously with the brain model.

Because Cog is a synchronous, digital architecture,
users can halt and restart model execution without per-
turbing the computation, so that they can peek inside their
model and debug it if necessary. If enough computational
resources are available, Cog can run faster than real time
in a virtual environment.

Figure 4 is a screenshot of the graphical user interface
(GUI) in the Cog debugger. The left side of the screen shows
a graph of the network being debugged; in this case, a
feed-forward network is implementing a simple form of
boundary completion. The user can click on various points
within that model to view its internal state, which the GUI
displays on the right side.

BUILDING APPLICATIONS
Cog can implement a wide range of neuromorphic al-

gorithms. To give an idea of Cog’s capabilities, we describe
four small applications that we built using our framework:
contrast normalization, independent component analysis,
learning of orientation maps with ocular dominance, and
boundary completion.

Nonlinear
transformation

W

x

Partial
inference, y

Learning
feedback, g

Linear
transformation

Partial inference:
y = W • x

Adaptation:
W = W + f(x, W, g)

Figure 3. How learning occurs. Linear and nonlinear transfor-
mations cooperate to implement the learning that corre-
sponds to long-term memory. Cog combines a linear trans-
formation’s current state, W, with the input, x, to produce y, a
partial inference. It then combines g, x, and W to implement
learning. The learning function, f, determines the type of
learning that occurs.

25FEBRUARY 2011

Contrast normalization
Figure 5 illustrates contrast normalization using the

Retinex algorithm7 as implemented with Cog. The image
in the figure is of a parking garage, which contains a
dynamic range that a camera cannot capture in all its
detail, but that a human eye can. In Figure 5a, standard
photographic compression loses detail in the brightest
and darkest regions. However, one linear and one non-
linear transformation on Cog can easily implement the
Retinex algorithm, which approximates retinal process-
ing, to capture detail in both shadow and glare. Figure
5b shows the dramatic difference. Filtering is clearly
nonlocal, since the brightest areas in the original image
do not always correspond to the brightest areas in the
processed image. This early preprocessing is essential
for handling the real-world video streams that the brain
model receives as input.

Independent component analysis
Scientists believe that most of the information in natural

images is contained in the scene’s edges8 and that edge fil-
ters can capture and compress that information to simplify
later processing. Figure 6 shows an example of a model
built with Cog that uses BCM theory to learn the indepen-
dent components of natural scenes.

In the application, a simple network implemented on
Cog uses three transformations in series to approximate
early processing in the visual system. The first transfor-
mation enhances edges using a difference-of-Gaussians

Figure 5. Contrast normalization of a high-contrast scene in
a parking garage. (a) Standard photographic compression
(.jpeg) of the scene loses details in deep shadow and bright
regions. (b) The Retinex algorithm as implemented with Cog
recaptures the details while maintaining local contrast.
(Image data courtesy of R. Brinkworth and D. O’Carroll, “
Robust Models for Optic Flow Coding in Natural Scenes
Inspired by Insect Biology,” PLoS Computational Biology,
vol. 5, no. 11; www.ploscompbiol.org/article/info%3Adoi%
2F10.1371%2Fjournal.pcbi.1000555;jsessionid=4BEF883BF3
CAA0B158302B10E2E74AA1.ambra02).

Figure 4. Debugging with Cog. (left) The GUI displays the network structure, which the user is probing to display the internal
state of some of the model’s adaptive transformations. (right) Each window names the adaptive transformation being displayed.
The bottom two windows show snapshots of the tensor fields generated and transmitted by two of the network transforma-
tions, while the top window displays a history of a single state variable within a third transformation.

(b)

(a)

COVER FE ATURE

COMPUTER	26

filter. The second, a linear transformation, applies con-
volution with adaptive kernels that implement simple
Hebbian learning. Finally, the third transformation imple-
ments a competitive field of BCM theory neurons.9 Random
patches from natural images (photographs of trees, grass,
fields) drive the first layer, and the last two layers respond
by adapting to their inputs. The resulting network self-
organizes into a set of edge filters, shown in the figure, that
react strongly to edges (the “independent components” of
natural scenes) in visual inputs (approximating simple cells
in the V1 cortical region of the vision system).

Orientation maps and ocular dominance
Experiments show that simple cells (neurons) in the V1

area of the visual cortex behave as edge filters and that the
orientation of those edge filters varies smoothly over the
surface of V1. Experiments also show that V1 cells receive
visual input information from both eyes, but that signals
from only one eye dominate any given cell. This ocular
dominance organization occurs in clumps or bands, de-
pending on the species.

Figures 7 and 8 illustrate a Cog model of the self-organi-
zation of V1 for both orientation and ocular dominance. In
this example, we input a series of random images, heavily
filtered to form blob-like images.10 We then topographi-
cally connected two views of the image, simulating two
eyes, to the simulated V1. Figure 7 shows the resulting self-
organization of the orientation filters, and Figure 8 shows
the resulting ocular dominance clumping.

Boundary completion
A person can easily recognize visual objects even when

noise or foreground objects obstruct or partially occlude
them. People somehow infer the missing information and
fill in the scene to form completed percepts—presumably
to facilitate recognition in later cortical stages. Boundary
completion, a simple form of this filling-in process, com-

Figure 6. Learning independent components of natural
scenes. A network built with Cog for learning independent
components preprocessed random patches from natural
scenes using a difference-of-Gaussians filter and then pro-
cessed that output using the BCM neuron model combined
with Hebbian learning. The result was the learning of the 16
Gabor-like edge filters shown.

Figure 7. Topographic map of orientation selectivity. (a) Be-
fore learning, there are no identifiable clusters of orientation
selectivity. (b) Clusters emerge after learning, with different
colors denoting particular orientations.

(b)(a)

Figure 8. Topographic map of ocular dominance. (a) Before
learning, there are no identifiable columns of ocular domi-
nance. (b) Columns emerge after learning, with white denot-
ing left eye, black denoting right eye, and gray denoting
intermediate.

(b)(a)

 Figure 9. Simple boundary completion. (a) A noisy figure
with a broken line and broken circle becomes (b) smooth and
filled in using a boundary completion algorithm implemented
with Cog.

(b)(a)

27FEBRUARY 2011

pletes broken and curved edges and lines using the Gestalt
principles of proximity and good continuation.

Although a self-organizing boundary-completion model
exists, it is computationally expensive to learn.11 We found
it much cheaper simply to prewire the mechanism into a
Cog-built model. The model can then exploit a vast number
of mathematical tricks, such as steerable filters, fast Fou-
rier transform, tensor convolution, and data compression.12
Relative to the traditional boundary completion model,13
a Cog-built model with this mechanism can reduce imple-
mentation energy by at least four orders of magnitude.

Figure 9 shows the input and output of a Cog-built model
that implements a simple form of boundary completion. In
this example, the user has implemented the feed-forward
network in Figure 4 to complete the noisy input image of
a broken circle and broken line.

A lthough a general theory of cognition does not
yet exist, researchers do recognize that platform
flexibility is essential as they plow through the fog

and uncertainty of learning to build intelligent machines.
Cog has many features that offer this flexibility. Its all-
digital hardware foundation reduces technological and
fabrication risk. Its placement of memristive synaptic
memory banks close to their associated processing ele-
ments reduces CV2f power losses by several orders of
magnitude—a reduction critical in processing neuro-
morphic algorithms, which deeply entangle memory and
computation.

Cog’s tensor framework mechanisms are perhaps non-
biological, but they are well-matched to our underlying
CMOS/memristive technology. The framework is also ex-
pressive, pulling in linear algebra, geometry, and analysis
into a single foundation, and enables exploitation of much
mathematical and engineering knowledge—for example,
information and coding theory, digital signal processing,
non-Euclidean coordinate systems, tensor convolution,
normalized convolution, and fast Fourier transforms,
among many others. The framework also supports a wide
variety of learning laws and network models.

Perhaps the most important architectural attribute
is the nearly complete decoupling of the software ab-
stractions for building brains (tensor fields and adaptive
transformations) from the underlying hardware platform.
Not only does this provide portability among existing and
future platforms, it allows us to quickly modify the soft-
ware architecture to accommodate new or unexpected
algorithmic problems as they arise.

Acknowledgments
This work was partially funded by the DARPA SyNAPSE pro-
gram, contract HR0011-09-3-0001. The views, opinions, and/or
findings contained in this article are those of the authors and

should not be interpreted as representing the official views or
policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

References
	 1.	 L.O. Chua and S.M. Kang, “Memristive Devices and Sys-

tems,” Proc. IEEE, vol. 64, no. 2, 1976, pp. 209-223.
	 2.	 D.B. Strukov et al., “The Missing Memristor Found,” Nature,

1 May 2008, pp. 80-83.
	 3.	 Q. Xia et al., “Memristor/CMOS Hybrid Integrated Circuits

for Reconfigurable Logic,” Nano Letters, vol. 9, no. 10, 2009,
pp. 3640-3645.

	 4.	 B. Madappuram et al., “On Brain-Inspired Connectivity
and Hybrid Network Topologies,” IEEE Symp. Nanoscale
Architectures (NANOARCH 08), IEEE Press, June 2008, pp.
54-61.

	 5.	 D.S. Basset et al., “Efficient Physical Embedding of To-
pologically Complex Information Processing Networks
in Brains and Computer Networks,” PLoS Computational
Biology, Apr. 2010, e1000748.

	 6.	 A. Gorchetchnikov et al., “General Form of Learning
Algorithms for Neuromorphic Hardware Implementation,”
BMC Neuroscience, vol. 11 (supp. 1), 2010, p. 91; www.
biomedcentral.com/1471-2202/11/S1/P91.

	 7.	 D.J. Jobson, Z. Rahman, and G.A. Woodell, “Properties and
Performance of a Center/Surround Retinex,” IEEE Trans.
Image Processing, Mar. 1997, pp. 451-462.

	 8.	 A. Bell and T. Sejnowski, “The ‘Independent Components’
of Natural Scenes Are Edge Filters,” Vision Research, Dec.
1997; pp. 3327-3338.

	 9.	 N. Intrator and L. Cooper, “Objective Function Formulation
of the BCM Theory of Visual Cortical Plasticity: Statistical
Connections, Stability Conditions,” Neural Networks, vol.
5, no. 1, 1992, pp. 3-17.

	10.	 R. Mikkulainen et al., Computational Maps in the Visual
Cortex, Springer, 2005.

	11.	 S. Grossberg and J. Williamson, “A Neural Model of How
Interlaminar Connections of Visual Cortex Develop into
Adult Circuits that Carry Out Perceptual Grouping and
Learning,” Cerebral Cortex, vol. 11, no. 1, 2001, pp. 37-58.

	12.	 E. Franken et al., “An Efficient Method for Tensor Voting
Using Steerable Filters,” LNCS 3954, Springer, 2006, pp.
228-240.

	13.	 S. Grossberg and E. Mingolla, “Neural Dynamics of Per-
ceptual Grouping—Textures, Boundaries, and Emergent
Segmentations,” Perception and Psychophysics, vol. 38, no.
2, pp. 141-171.

Greg Snider is a senior researcher at Hewlett-Packard Labo-
ratories and the principal HP investigator in the DARPA
SyNAPSE project. His research interests include hardware
and software architectures. Snider received an MS in sci-
entific instrumentation from the University of California,
Santa Barbara, and an MSEE from Stanford University.
Contact him at snider.greg@hp.com.

Rick Amerson is a managing consultant for Hewlett-Pack-
ard Laboratories. His research interests include computer
architecture, instruction sets, memory, computation, and
algorithms. Amerson received an SM in management of

COVER FE ATURE

COMPUTER 28

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

technology from the Massachusetts Institute of Technology.
Contact him at frederic.amerson@hp.com.

Dick Carter is a consulting research scientist at Hewlett-
Packard Laboratories. His research interests include parallel
algorithms and GPU computing. Carter received an MSEE
from Stanford University. He is a member of IEEE. Contact
him at richard.carter@hp.com.

Hisham Abdalla is a research associate at Hewlett-Packard
Laboratories. His research interests include neuromorphic
engineering, robotics, computer architecture, and floating-
point gate array design. Abdalla received a PhD in electrical
and computer engineering from the University of Maryland
at College Park. Contact him at hisham.abdalla@hp.com.

Muhammad Shakeel Qureshi is a researcher and circuit
designer at Hewlett-Packard Laboratories. His research
interests include low-power circuits, MEMS sensor interfaces,
optoelectronics, and mixed-signal and radio-frequency cir-
cuits for communication blocks. Qureshi received a PhD in
electrical and computer engineering from the Georgia Insti-
tute of Technology. Contact him at shakeel.qureshi@hp.com.

Jasmin Léveillé is a postdoctoral associate in the Depart-
ment of Cognitive and Neural Systems at Boston University.
His research interests include human and computer vision
and neural architectures for high-performance computing.
Léveillé received a PhD in cognitive and neural systems
from Boston University. Contact him at jasminl@cns.
bu.edu.

Massimiliano Versace is a senior research scientist in the
Department of Cognitive and Neural Systems at Boston
University and director of the university’s Neuromorphics

Laboratory. He is also codirector of technology outreach at
NSF’s Science of Learning Center’s Center of Excellence for
Learning in Education, Science, and Technology (CELEST).
He is a principal investigator for the Boston University
subcontract with Hewlett-Packard in the DARPA SyNAPSE
project. Versace received a PhD in cognitive and neural sys-
tems from Boston University. Contact him at maxversace
@gmail.com.

Heather Ames is a research scientist in the Department of
Cognitive and Neural Systems at Boston University, codirec-
tor of technology outreach at NSF’s CELEST, and a member
of its governing board to facilitate technology transfer from
models to private industries and laboratories. Her research
interests include speech modeling, analysis of learning and
homeostasis in neural network systems, and the technology
transfer of brain-based applications. Ames received a PhD
in cognitive and neural systems from Boston University.
Contact her at heather.m.ames@gmail.com.

Sean Patrick is a doctoral student in the Department of
Cognitive and Neural Systems at Boston University. His re-
search interests include robotics and prosthetics; adaptive,
neural, and evolutionary algorithms; and computational
neuroscience. Patrick received a BS in electrical and com-
puter engineering from the Worcester Polytechnic Institute.
Contact him at sean.patrick.619@gmail.com.

Benjamin Chandler is a doctoral student in the Department
of Cognitive and Neural Systems at Boston University and
ACES associate at the university’s Center for Computational
Science. His research interests include large-scale simula-
tion, homeostatic plasticity, and neuromorphic computing.
Chandler received a BS in cognitive science from Carnegie
Mellon University. He is a student member of IEEE. Contact
him at bchandle@gmail.com.

Anatoli Gorchetchnikov is a research assistant profes-
sor in the Department of Cognitive and Neural Systems at
Boston University and leader of the Modular Neural Explor-
ing and Traveling Agent project within DARPA’s SyNAPSE
program. His research interests include the biologically
detailed modeling of the hippocampus and related areas
involved in spatial navigation and episodic memory, the
application of biological models to robotic navigation, and
the development of software tools to increase modeling
productivity. Gorchetchnikov received a PhD in cognitive
and neural systems from Boston University. Contact him
at tangorn@gmail.com.

Ennio Mingolla is a professor and chair, Department of
Cognitive and Neural Systems, Boston University. His re-
search interests include the development and empirical
testing of neural network models of visual perception and
the transition of these models to technological applications,
visual psychophysics, and the computational modeling of
brain processes. Mingolla received a PhD in experimental
psychology from the University of Connecticut. Contact him
at ennio@cns.bu.edu.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

