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1 Introduction

Although the basic ideas underlying early vision appear deceptively simple and their computa-

tional paradigms are known for a long time, early vision problems are difficult to quantify and

solve. Such a difficulty is often related on the representation we adopt for the visual signal, which

must be capable of capturing, through proper “channels”,what is wherein the visual signal, that

is the structural (“what”) and the positional (“where”) information from the images impinging the

retinas. Ever since the initial formulation of the channel concept, the problem arises of jointly

handling the existence of spatial frequency channels on theone hand, and of orientation chan-

nels on the other. At a local operator level, the two-dimensional (2D) Gabor filter (proposed

by J. Daugman[Daugman, 1985] and S. Marcelja[Marc̆elja, 1980], as an extension of its one-

dimensional (1D) counterpart[Gabor, 1946]) retains the optimal joint information resolution in

both the domains and meets thoroughly this demand, by underlining the 2D nature of the fre-

quency representation and thus being isomorphic to the 2D character of the spatial manifold of

the visual/retinal image. In this way, 2D Gabor filters reconciled the “atomistic” description of

early vision, based on local feature detection in the space domain with the “undulatory” interpre-

tation, based on a Fourier-like decomposition into spatial-frequency components.

2 Visual features as measures in the harmonic space

The goal of early vision is to extract as much information as possible about the structural prop-

erties of the visual signal. As pointed out by[Koenderink and van Doorn, 1987] and[Adelson

and Bergen, 1991], an efficient internal representation is necessary to guarantee all potential vi-

sual information can be made available for higher level analysis. The measurement of specific,

significant visual “elements” in a local neighborhood of thevisual signal has led to the concept

1



of “feature” and of “feature extraction”. An image feature can be defined in terms of attributes

related to the visual data. Though, in practice, many features are also defined in terms of the

particular procedure used to extract information about that feature, and, in more general terms, on

the specific scheme adopted for the representation of the visual signal. At an early level, feature

detection occurs through initial localquantitativemeasurements of basic image properties (e.g.,

edge, bar, orientation, movement, binocular disparity, color) referable to spatial differential struc-

ture of the image luminance and its temporal evolution (cf. linear visual cortical cell responses,

see e.g.[Jones and Palmer, 1987] [De Angeliset al., 1993] [Carandiniet al., 2005]). Later stages

in vision can make use of these initial measurements by combining them in various ways, to

come up with categoricalqualitativedescriptors, in which information is used in a non-local way

to formulate more global spatial and temporal predictions (e.g., see[Krügeret al., 2004]).

The receptive fields of the cells in the primary visual cortexhave been interpreted as fuzzy

differential operators (or localjets [Koenderink and van Doorn, 1987]) that provide regularized

partial derivatives of the image luminance along differentdirections and at several levels of res-

olution, simultaneously. The jets characterize the local geometry in the neighborhood of a given

pointx = (x, y). The order of the jet determines the amount of geometry represented. Given the

2D nature of the visual signal, the spatial direction of the derivative (i.e., the orientation of the

corresponding local filter) is an important “parameter”. Within a local jet, the directionally biased

receptive fields are represented by a set of similar filter profiles that merely differ in orientation.

Alternatively, considering the space/spatial-frequencyduality [Gabor, 1946, Daugman, 1985],

the local jets can be described through a set of independent spatial-frequency channels, which are

selectively sensitive to a different limited range of spatial frequencies. These spatial-frequency

channels are equally apt as the spatial ones. From this perspective, it is formally possible to

derive, on a local basis, a complete harmonic representation (amplitude, phase, and orientation)

of any visual stimulus, by defining the associated analytic signal in a combined space-frequency

domain through filtering operations with complex-valued band-pass kernels. Since spatial infor-

mation is being linearly transformed from the space domain at the level of pixels, into a combined

space-frequency domain at a cortical-like representationlevel, no actual analysis is taking place

at this level, and the information is merely being put into another (presumably more useful) form

[De Valois and De Valois, 1990].

Formally, due to the impossibility of a direct definition of the analytic signal in two dimen-

sions, a 2D spatial frequency filtering would require an association between spatial frequency and

orientation channels. Basically, this association can be handled ‘separately’, for each orientation

channel, by using Hilbert pairs of band-pass filters that display symmetry and antisymmetry about
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a steerable axis of orientation1.

For each orientation channelθ, an imageI(x) is filtered with a complex-valued filter:

f θ
A(x) = f θ(x) − if θ

H(x) (1)

wheref θ
H

(x) is the Hilbert transform off θ(x) with respect to the axis orthogonal to the filter’s

orientation:

f θ
H(x) = fH(xθ, yθ) =

1

π

∫ +∞

−∞

f(ξ, yθ)

ξ − xθ

dξ

with xθ andyθ the principal axes of the energy distribution of the filter inthe spatial domain.

This results in a complex-valuedanalytic image:

Qθ
A(x) = I ∗ f θ

A(x) = Cθ(x) + iSθ(x) , (2)

whereCθ(x) andSθ(x) denote the responses of the quadrature filter pair. For each spatial lo-

cation, the amplitudeρθ =
√

C2
θ + S2

θ and the phaseφθ = atan2(Sθ, Cθ) envelopes measure

the harmonic information content in a limited range of frequencies and orientations to which the

channel is tuned.

2.1 Compact band-pass filtering

In the harmonic space it is in general an important requirement to have both the spatial width of

the filters and the spatial frequency bandwidth small, so that good localization and good approx-

imation of the harmonic information is realized simultaneously. Gabor functions reaching the

maximal joint resolution in space and spatial frequency domains are specifically suitable for this

purpose and are extensively used in computational vision[Daugman, 1985]. Different band-pass

filters have been proposed as an alternative to Gabor functions, on the basis of specific proper-

ties of the basis functions[Young, 1985, Watson, 1987, Hawken and Parker, 1987, Field, 1987,

Martens, 1990, Stork and Wilson, 1990, Yang, 1992, Klein andBeutter, 1992], or according to

theoretical and practical considerations of the whole space-frequency transform[Mallat, 1989,

Reed and Wechsler, 1990, Freeman and Adelson, 1991, Perona,1992, Simoncelliet al., 1992,

Felsberg and Sommer, 2004].

1As an alternative a 2D isotropic generalization of the analytic signal: the monogenic signal[Felsberg and Sommer,

2001], has been proposed, which allows us to build isotropic harmonic representations that are independent of the

orientation (i.e., omnidirectional). By definition, the monogenic signal is a 3D phasor in spherical coordinates and

provides a framework to obtain the harmonic representationof a signal respect to the dominant orientation of the

image that becomes part of the representation itself
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A detailed comparison of the different filters evades the scope of these notes and numerous

comparative reviews can be already found in the literature (e.g., see[Jacobson and Wechsler,

1988] [Wechsler, 1990] [Navarroet al., 1996]).

Let us consider a discrete set of oriented (i.e., anisotropic) Gabor filters and the classical

steerable filter approach[Freeman and Adelson, 1991] that allows a continuous steerability of

the filter with respect to any orientation. Hence, it is possible in principle to steer the filter with

respect to the dominant orientation of the signal, which, yet, has to be known in advance and

cannot be gained from the representation itself.

For all the filters considered, we chose the design parameters to have a good coverage of the

space-frequency domain and to keep the spatial support (i.e., the number of taps) to a minimum,

in order to cut down the computational cost. Therefore, we determined the smallest filter on the

basis of the highest allowable frequency without aliasing,and we adopted a pyramidal technique

[Adelsonet al., 1984] as an economic and efficient way to achieve a multi-resolution analysis

(see also “Notes on band-pass spatial filters”). Accordingly, we fixed the maximum radial peak

frequency (ω0) by considering the Nyquist condition and a constant relative bandwidthβ around

one octave, that allows us to cover the frequency domain without loss of information. The result

was an11 × 11 filter mask capable of resolving sub-pixel phase differences. For Gabor and

steerable filters, we should also consider the minimum number of oriented filters to guarantee a

uniform orientation coverage. This number depends on the filter bandwidth and it is related to the

desired orientation sensitivity of the filter (e.g., see[Daugman, 1985, Fleet and Jepson, 1990]);

we verified that, under our assumptions, it is necessary to use at least eight orientations. To satisfy

the quadrature requirement all the even symmetric filters have been “corrected” to cancel the DC

sensitivity. Where possible, the filters have been expressed as sums ofx-y separable functions to

implement separate 1D convolutions instead of 2D convolutions in a similar way that[Nestares

et al., 1998], with a consequent further drop of the computational burden.

3 Filter design specification

Here we present a detailed description of the filters used.

Gabor filters- A Gabor oriented filter along an angleθ with respect to the horizontal axis is

defined by:

f θ
Gabor(x, y) = e−

x
2
+y

2

2σ2 ejω0(x cos θ+y sin θ)

whereω0 is the peak frequency of the filter andσ determines its spatial extension. The spatial

window has been chosen as four timesσ. At the highest scaleω0 = π/2 andσ = 2.67. Following
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[Nestareset al., 1998], we implemented the oriented filters as sums of separable filters. By

exploiting symmetry considerations, all eight even and oddfilters (see Fig. 1) can be constructed

on the basis of twentyfour 1D convolutions. The 1D filters aremodified by enforcing zero DC

sensitivity on the resulting 2D filters in which they take part, and by minimizing the difference

with the theoretical 2D Gabor filters. Specific care have beenpaid to adjust the coefficients of

each filter function so that the even and odd symmetry is respected. To this purpose, a constrained

non-linear multivariable minimization is adopted.

Figure 1: The resulting11 × 11 quadrature pair of Gabor filters forω0 = π/2 and 8 orientations.

Steerable filters- Following [Freeman and Adelson, 1991], an approximation of a complex-

valued Gabor filter of arbitrary orientationθ can be synthesized by taking a linear combination of

steerable quadrature pairs of 2D Gaussian directional derivatives, along the cardinal axes:

g0(x, y) = e−
x
2
+y

2

2σ2

gL(x, y) =
∂L−l

∂xL−l

∂l

∂yl
g0(x, y) l = 0, 1, . . . , L − 1

f θ
Steer(x, y) = g0(x)

L
∑

l=1

bl(θ)Pl,σ(x)Ql,σ(y)

wherebl(θ) are the interpolation functions:

bl(θ) = (−1)l





L

l



 cosL−l θ sinl θ

L is the order of differentiation, andPl andQl are polynomial functions defined as:

Pl,σ(x)Ql,σ(y) =

(

xL−l

σ2(L−l)
+ · · ·

)(

yl

σ2l
+ · · ·

)

.

Gaussian derivatives asymptotically coincide to a Gabor function with a radial peak frequency

ω0 = σ−1
√

L + 1 and an absolute bandwidth∆ω = σ−1
√

2/2 [Koenderink and van Doorn,
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L=2

L=4

Figure 2: The11×11 x-y separable, steerable quadrature pair basis filters for two different orders

of differentiation. The width of the Gaussian function has been adjusted to have, for both cases, a

resultingω0 = π/2: σ = 0.90 for L = 2 andσ = 1.27 for L = 4.

1987]. Since the peak frequency and the bandwidth are jointly defined byσ, it is not possible

to design banks of steerable filters with an arbitrarily constant relative bandwidth. We therefore

adjusted the spatial extension of the Gaussian function (σ) in order to have the same peak fre-

quency of the Gabor filters, and deduced as a consequence the relative bandwidth. The number of

basis kernels to compute the oriented outputs of the filters depends on their derivative order. The

quadrature pair of these filters has been obtained by approximating their Hilbert transform as a

the least square fit to a polynomial times a Gaussian described in [Freeman and Adelson, 1991].

The basis filters corresponding to Gaussian derivatives of 2nd- or 4th-order (see Fig. 2) turned out

as an acceptable compromise between the representation efficacy (i.e., optimality in terms of the

Heisenberg-Weyl uncertainty principle) and the computational efficiency.

All the filters have been normalized prior to their use in order to have constant energy. The

corresponding rosette-like frequency representation of the filters used is shown in Fig. 3, for three

different scales (octaves).
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Gabor

s2

s4

Figure 3: Rosette-like diagrams of the multichannel frequency representation for the Gabor, and

the steerable filters s2 (L = 2) and s4 (L = 4), respectively. It is worth noting that the orien-

tation bandwidth of the steerable filters is larger than thatobtained with Gabor filters. Contours

correspond to half-width cut-off frequencies, and each corona is separated by an octave scale.
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[Krügeret al., 2004] N. Krüger, M. Lappe, and F. Wörgötter. Biologically motivated multi-

modal processing of visual primitives.The Interdisciplinary Journal of Artificial Intelligence

and the Simulation of Behaviour, 1(5):417–428, 2004.

[Mallat, 1989] S.G. Mallat. A theory for multiresolution signal decomposition: The wavelet

representation.IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693, 1989.

[Martens, 1990] J.B. Martens. The Hermite transform - Theory.IEEE Trans. Acoust., Speech,

Signal Processing, 38:1595–1606, 1990.

[Marc̆elja, 1980] S. Marc̆elja. Mathematical description of the responses ofsimple cortical cells.

J. Opt. Soc. Amer. A, 70:1297–1300, 1980.

[Navarroet al., 1996] R. Navarro, A. Tabernero, and G. Cristobal. Image representation with

gabor wavelets and its applications. In P. W. Hawkes, editor, Advances in Imaging and Electron

Physics, pages 1–84. Academic Press, San Diego CA, 1996.

[Nestareset al., 1998] O. Nestares, R. Navarro, J. Portilla, and A. Tabernero. Efficient spatial-

domain implementation of a multiscale image representation based on Gabor functions.Jour-

nal of Electronic Imaging, 7(1):166–173, 1998.

[Perona, 1992] P. Perona. Steerable-scalable kernels for edge detection and junction analysis.

Image Vis. Comput., 10:663–672, 1992.

9



[Reed and Wechsler, 1990] T. Reed and H. Wechsler. Segmentation of textured images and

gestalt organization using spatial/spatialfrequency representations.IEEE Trans. Pattern Anal-

ysis Mach. Intell., 12:1–12, 1990.

[Simoncelliet al., 1992] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger.

Shiftable multiscale transforms.IEEE Trans. on Information Theory, 38(2):587–607, 1992.

[Stork and Wilson, 1990] D.G. Stork and H.R. Wilson. Do Gabor functions provide appropriate

decriptions of visual cortical receptive fields?J. Opt. Soc. Amer. A, 7(8):1362–1373, 1990.

[Watson, 1987] A.B. Watson. The cortex transform: rapid computation of simulated neural im-

ages.Computer Vision, Graphics, and Image Processing, 39:311–327, 1987.

[Wechsler, 1990] H. Wechsler.Computational Vision. Academic Press, 1990.

[Yang, 1992] J. Yang. Do Gabor functions provide appropriate decriptions of visual cortical

receptive fields?: comment.J. Opt. Soc. Amer. A, 9(2):334–336, 1992.

[Young, 1985] R.A. Young. The Gaussian derivative theory of spatial vision: Analysis of corti-

cal cell receptive field line-weighting profiles. TechnicalReport GMR-4920, General Motors

Research, 1985.

10


