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1 Introduction

Although the basic ideas underlying early vision appeaepteely simple and their computa-
tional paradigms are known for a long time, early vision peafs are difficult to quantify and
solve. Such a difficulty is often related on the represemtatie adopt for the visual signal, which
must be capable of capturing, through proper “channe&lsiatis wherein the visual signal, that
is the structural (“what”) and the positional (“where”) ammation from the images impinging the
retinas. Ever since the initial formulation of the channehaept, the problem arises of jointly
handling the existence of spatial frequency channels omtigechand, and of orientation chan-
nels on the other. At a local operator level, the two-dimemai (2D) Gabor filter (proposed
by J. DaugmarDaugman, 198band S. MarceljdMarcelja, 1980, as an extension of its one-
dimensional (1D) counterpafGabor, 1949 retains the optimal joint information resolution in
both the domains and meets thoroughly this demand, by unaeylthe 2D nature of the fre-
qguency representation and thus being isomorphic to the 2acter of the spatial manifold of
the visual/retinal image. In this way, 2D Gabor filters redtad the “atomistic” description of
early vision, based on local feature detection in the spaocgath with the “undulatory” interpre-

tation, based on a Fourier-like decomposition into spdtedjuency components.

2 Visual features as measures in the harmonic space

The goal of early vision is to extract as much information assible about the structural prop-
erties of the visual signal. As pointed out figoenderink and van Doorn, 19Band[Adelson
and Bergen, 199] an efficient internal representation is necessary to gteeaall potential vi-
sual information can be made available for higher levelysigal The measurement of specific,

significant visual “elements” in a local neighborhood of thgual signal has led to the concept



of “feature” and of “feature extraction”. An image featurancbe defined in terms of attributes
related to the visual data. Though, in practice, many featare also defined in terms of the
particular procedure used to extract information aboutféeture, and, in more general terms, on
the specific scheme adopted for the representation of thehsggnal. At an early level, feature
detection occurs through initial locglantitativemeasurements of basic image properties (e.g.,
edge, bar, orientation, movement, binocular disparitigryeeferable to spatial differential struc-
ture of the image luminance and its temporal evolution (cfedr visual cortical cell responses,
see e.g[Jones and Palmer, 199De Angeliset al,, 1993 [Carandiniet al., 2009). Later stages

in vision can make use of these initial measurements by aangpithem in various ways, to
come up with categoricajualitativedescriptors, in which information is used in a non-local way
to formulate more global spatial and temporal predictiang.( seéKriigeret al, 2004).

The receptive fields of the cells in the primary visual cottexe been interpreted as fuzzy
differential operators (or locgéts [Koenderink and van Doorn, 19B7hat provide regularized
partial derivatives of the image luminance along differginéctions and at several levels of res-
olution, simultaneously. The jets characterize the loeaingetry in the neighborhood of a given
pointx = (z,y). The order of the jet determines the amount of geometry septed. Given the
2D nature of the visual signal, the spatial direction of tlkee\dtive (i.e., the orientation of the
corresponding local filter) is an important “parameter” thifi a local jet, the directionally biased
receptive fields are represented by a set of similar filtefilpothat merely differ in orientation.

Alternatively, considering the space/spatial-frequediaglity [Gabor, 1946, Daugman, 1985
the local jets can be described through a set of indepengatiakfrequency channels, which are
selectively sensitive to a different limited range of salafiequencies. These spatial-frequency
channels are equally apt as the spatial ones. From thisqmran it is formally possible to
derive, on a local basis, a complete harmonic representéimplitude, phase, and orientation)
of any visual stimulus, by defining the associated analytjoad in a combined space-frequency
domain through filtering operations with complex-valuedd@ass kernels. Since spatial infor-
mation is being linearly transformed from the space domtihealevel of pixels, into a combined
space-frequency domain at a cortical-like representdéieel, no actual analysis is taking place
at this level, and the information is merely being put intotier (presumably more useful) form
[De Valois and De Valois, 1990

Formally, due to the impossibility of a direct definition dfet analytic signal in two dimen-
sions, a 2D spatial frequency filtering would require an eisgion between spatial frequency and
orientation channels. Basically, this association candmelled ‘separately’, for each orientation

channel, by using Hilbert pairs of band-pass filters thagildissymmetry and antisymmetry about



a steerable axis of orientatibn

For each orientation chann@lan imagel (x) is filtered with a complex-valued filter:

Fix) = fO(x) —iffy(x) (1)

where f{ (x) is the Hilbert transform of’ (x) with respect to the axis orthogonal to the filter's

orientation:
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with x4 andyy the principal axes of the energy distribution of the filtethie spatial domain.

This results in a complex-valuezhalytic image
QU (x) = I % f4(x) = Cy(x) +iSp(x) , )

whereCy(x) and Sp(x) denote the responses of the quadrature filter pair. For g@atiaklo-
cation, the amplitudgy = /C7 + S2 and the phasey = atan2(Sy, Cp) envelopes measure
the harmonic information content in a limited range of freqcies and orientations to which the

channel is tuned.

2.1 Compact band-pass filtering

In the harmonic space it is in general an important requirgrt@have both the spatial width of
the filters and the spatial frequency bandwidth small, sbdbad localization and good approx-
imation of the harmonic information is realized simultangly. Gabor functions reaching the
maximal joint resolution in space and spatial frequency @iosare specifically suitable for this
purpose and are extensively used in computational vifd@ugman, 1985 Different band-pass
filters have been proposed as an alternative to Gabor funsgtin the basis of specific proper-
ties of the basis functions¥oung, 1985, Watson, 1987, Hawken and Parker, 1987, Fi6@7,1
Martens, 1990, Stork and Wilson, 1990, Yang, 1992, Klein Bedtter, 1999, or according to
theoretical and practical considerations of the whole sgeequency transforrbfMallat, 1989,
Reed and Wechsler, 1990, Freeman and Adelson, 1991, Pdr@®2, Simoncelliet al., 1992,
Felsberg and Sommer, 2004

1As an alternative a 2D isotropic generalization of the ai@bignal: the monogenic signiffelsberg and Sommer,
2001, has been proposed, which allows us to build isotropic haiepresentations that are independent of the
orientation (i.e., omnidirectional). By definition, the magenic signal is a 3D phasor in spherical coordinates and
provides a framework to obtain the harmonic representatioa signal respect to the dominant orientation of the

image that becomes part of the representation itself



A detailed comparison of the different filters evades thgeoaf these notes and humerous
comparative reviews can be already found in the literaterg.( sedJacobson and Wechsler,
1989 [Wechsler, 199D[ Navarroet al., 1994).

Let us consider a discrete set of oriented (i.e., anisatjoBiabor filters and the classical
steerable filter approadiFreeman and Adelson, 199that allows a continuous steerability of
the filter with respect to any orientation. Hence, it is plkesin principle to steer the filter with
respect to the dominant orientation of the signal, which, kias to be known in advance and
cannot be gained from the representation itself.

For all the filters considered, we chose the design param&drave a good coverage of the
space-frequency domain and to keep the spatial supparttieenumber of taps) to a minimum,
in order to cut down the computational cost. Therefore, werdgned the smallest filter on the
basis of the highest allowable frequency without aliasarg] we adopted a pyramidal technique
[Adelsonet al, 1984 as an economic and efficient way to achieve a multi-resalugioalysis
(see also “Notes on band-pass spatial filters”). Accorgingk fixed the maximum radial peak
frequency ¢g) by considering the Nyquist condition and a constant netabiandwidths around
one octave, that allows us to cover the frequency domainowitloss of information. The result
was anll x 11 filter mask capable of resolving sub-pixel phase differenceor Gabor and
steerable filters, we should also consider the minimum nuroberiented filters to guarantee a
uniform orientation coverage. This number depends on tteg Bndwidth and it is related to the
desired orientation sensitivity of the filter (e.g., $€augman, 1985, Fleet and Jepson, 1990
we verified that, under our assumptions, it is necessaryaatigast eight orientations. To satisfy
the quadrature requirement all the even symmetric filteve baen “corrected” to cancel the DC
sensitivity. Where possible, the filters have been expdeasesums of-y separable functions to
implement separate 1D convolutions instead of 2D convarhstin a similar way thaiNestares

et al, 1999, with a consequent further drop of the computational burden

3 Filter design specification

Here we present a detailed description of the filters used.
Gabor filters- A Gabor oriented filter along an anglewith respect to the horizontal axis is
defined by:

z2+y2 . .
fé‘, b (.Z',y) _ e—ﬁe]wo(xcose-l—ysm@)
abor

wherewy is the peak frequency of the filter amddetermines its spatial extension. The spatial

window has been chosen as four tinseAt the highest scaley, = 7/2 ando = 2.67. Following
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[Nestareset al, 1994, we implemented the oriented filters as sums of separabéesfilt By
exploiting symmetry considerations, all eight even and filtiet's (see Fig. 1) can be constructed
on the basis of twentyfour 1D convolutions. The 1D filters medified by enforcing zero DC
sensitivity on the resulting 2D filters in which they take tpand by minimizing the difference
with the theoretical 2D Gabor filters. Specific care have hgsEd to adjust the coefficients of
each filter function so that the even and odd symmetry is msge To this purpose, a constrained

non-linear multivariable minimization is adopted.
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Figure 1: The resultind1 x 11 quadrature pair of Gabor filters fa = 7/2 and 8 orientations.

Steerable filters Following [Freeman and Adelson, 199&n approximation of a complex-
valued Gabor filter of arbitrary orientatighcan be synthesized by taking a linear combination of
steerable quadrature pairs of 2D Gaussian directionalat&es, along the cardinal axes:

_r2+92
go(w,y) =e 27
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Pla' Qla’()

) cosEt9sint 0
l

L is the order of differentiation, anB;, and@),; are polynomial functions defined as:

L-I 1
Po(2)Quo(y) = <%+) <%+>

Gaussian derivatives asymptotically coincide to a Gaboction with a radial peak frequency
wo = o 'W/L+1 and an absolute bandwidthw = a—l\/§/2 [Koenderink and van Doorn,

fSteer T y - gO

IIMh

whereb; (#) are the interpolation functions:

&
—~
>
~—
I
T
—_
~—
~
h



Figure 2: Thell x 11 z-y separable, steerable quadrature pair basis filters for iffeveht orders
of differentiation. The width of the Gaussian function hagi adjusted to have, for both cases, a
resultingwy = 7/2: ¢ = 0.90 for L = 2 ando = 1.27 for L = 4.

1987. Since the peak frequency and the bandwidth are jointly déflsy o, it is not possible
to design banks of steerable filters with an arbitrarily ¢antrelative bandwidth. We therefore
adjusted the spatial extension of the Gaussian functignn(order to have the same peak fre-
guency of the Gabor filters, and deduced as a consequencaddtieerbandwidth. The number of
basis kernels to compute the oriented outputs of the filtepgdds on their derivative order. The
guadrature pair of these filters has been obtained by appeaixig their Hilbert transform as a
the least square fit to a polynomial times a Gaussian deschitlé&reeman and Adelson, 1991
The basis filters corresponding to Gaussian derivatives@f @r 4th-order (see Fig. 2) turned out
as an acceptable compromise between the representaticacgf(i.e., optimality in terms of the
Heisenberg-Weyl uncertainty principle) and the compateti efficiency.

All the filters have been normalized prior to their use in oridehave constant energy. The
corresponding rosette-like frequency representatiohefitters used is shown in Fig. 3, for three
different scales (octaves).



Figure 3: Rosette-like diagrams of the multichannel fremyerepresentation for the Gabor, and
the steerable filters s2Z.(= 2) and s4 {. = 4), respectively. It is worth noting that the orien-
tation bandwidth of the steerable filters is larger than timained with Gabor filters. Contours
correspond to half-width cut-off frequencies, and eaclocaris separated by an octave scale.
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