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1 Introduction

Different constraints have to be considered:
e sampling and truncation issues
e coverage of radial frequency
e coverage of orientations

e DC sensitivity

2 Gabor function
We consider a vertically oriented Gabor functidh[2] centered at the origin:
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where the asterisk indicates the convolution produéf is the peak tuning frequenacy, ando,

determine the: andy filter dimensions, ang is the phase parameter for the sinusoidal modula-

tion, andA is a normalisation constant, which is application depenhdemo alternative normali-

sation conditions have been used most frequently in thafitee:

1. unitary area condition, which corresponds to a unitarximam value in the frequency

domain::
max F(ky, ky, ) =1 — A=1
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Figure 1: Real and imaginary component of a Gabor function.

2. unitary energy condition:
| f(z,y,¢) ||2=/ / @y, o) f(r,y,¢)dedy =1 — A=2/705,7, (4)

We can further characterize the Gabor filter in the frequetwpain by:

Absolute bandwidth @ cut-off frequenciesi(,, k") corresponding to half of the amplitude

spectrumE' (ky, ky, 1):

Ak — 2v2In2 (5)

Oz

@ cut-off frequenciesi(,, k) at one standard deviation of the amplitude spectrap= 1/0,):

Ak =20y (6)
Relative bandwidth (in octave)
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Typically 3 is chosen around 13(< [0.8,1.2]).

@ cut-off frequenciesit., ") corresponding to half of the amplitude spectriitk., ky,1):

ozko +v2In2
f=logy | ————=———= (8)
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13 = 1 allows a good coverage of the frequency space when one adqptsamidal multiscale approach (see
Section 4).



@ cut-off frequenciesk(,, k') at one standard deviation of the amplitude spectrap= 1/0,):
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From Eqgs.(8) and (9) it is straighforward to show that thetiab&effective” support of the filter

with respect to the axis is:
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respectively.

3 Sampling and spatial scale

To implement a multiscale approach in an efficient way, amydal approach is suggesté8l.
The approach guarantees a reduced computational loadepddhibility of making more correct
comparisons across the different scales (the filters atiffezaht scales are indeed defined on the
same number of samples). Once fixed the filter's parameterhéohighest resolution (taking
care to meet Nyquist requirements), the outputs at the logssiutions (scales) can be derived
straighforwardly by the pyramid.

By using pixels as units, the sampling period is 1 pixel, t@responds td /27 pixel~*
sampling frequency. Thus, the maximum bandwidtbf the signal to avoid aliasing is pixel=!
(2 < 7 pixel™1). Accordingly, considering the symmetry character of tr&b@ spectrum, the
maximum peak frequency respect to the Nyquist sampling iiondcan be derived from the
following equation:

Ak
k() + 7 < (12)

4 Multiscale frequency space coverage

The pyramidal approach corresponds to a multiscale repiesen based on powers of two. Ac-

cordingly, the minimunAk to cover the frequency domain without holes is
2
Ak > ko (13)

This corresponds to a minimal choice® 1 octave.



5 Orientation coverage

To generate a filter with an orientatish(measured from the positive horizontal axis), we can
rotate the vertically oriented filter (Eq. 1) By— 90° with respect to the filter center (positive

angle means counterclockwise rotation):

f(z,y,0,0)=A ! exp ( m—g — y_g) cis(kozg + 1) (14)
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xg = xcos(f — 90°) + ysin(6 — 90°)
yg = —xsin(f — 90°) 4+ y cos(d — 90°)

Note: ky can be considered thradial peak frequency (and the corresponding frequencies pro-

jected in the Cartesian space &pg = kg cos(# — 90°) andkg, = ko sin(§ — 90°)).

6 Orientation bandwidth

@ cut-off frequenciesi, k}') corresponding to half of the amplitude spectriittk, , k,, v):

v2In2
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AO = 2 arctan
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@ cut-off frequenciesi{,, k') at one standard deviation of the amplitude spectrap= 1/0,):

Af = 2 arctan (16)
00y
By confounding the arc with the chord, we can derive the apprate relationships:
Af ~ 2/ 2In2 AO~ 2 . (17)

Ty Ty
The minimum numberl{) of orientations necessary to cover the angular frequepayesis:
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(18)

7 Spatial truncation

Although Gabor functions are well localized, they ineviyahave infinite support. Truncation is
used in most practical implementation to avoid aliasingnfrpractical considerations the spatial

support can be chosen as a multitex(3) of .



8 DC cancelation

In general the Gabor function does not integrate to zero @diC component can be directly

obtained from the Gabor spectrum (ed.= 1):

2
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DC = F(0) = A - exp <— ) cos(¥) (19)

Note: only the sine component does have a null DC componeatiuvther note that for a small
bandwidth 3 < 0.7) DC correction is not needed, as its value is close to theirfigpgioint
precisiono (07%).

Basically, two approaches to remove the DC component caollogved: (1) modify the input
signal in order to obtain a zero-mean visual signal, or (2lifiyathe filter’s profile to obtain a
zero-mean filteér. It is worthy to note that the subtraction of the DC value te fitter is not a

proper solution.

9 Summary
Let us assume

=1 — Ak = gko
we can find the following upper bound féy:

Nyquist limit:
1 2 3
k0+§'§k0§ﬂ' HkOmax:Zﬂ'
suggested value ot 2komaq-

By adopting the cut-off frequency @ half of the amplitude cipem, the corresponding

lower bound foro,, is

Oxmin = i <—§+1> V2In2 = é\/21112

37 T
Examples
e Gabor function parameters:

B=1A=1,0, = 0, (even though alse, = 20, will be explored)

2For phase-based feature extraction, the damaging effee®E component are clear for the “direct methods” (by
introducing a loss of balance between the convolutions thigheven and odd Gabor filters), but they could not be a

real problem for the “population methods”.



ko =7/2,0, =6/m0Oro, =6v2In2/7

Spatial supportll x 11 pixels [-5:1:5] (or21 x 21 wheno, = 20,)
e A set of 8 quadrature pairs of spatial filters are proposed:
hi(z,y) = g(z,y,0,0) + jg(z,y,m/2,0k)
with 8 filter orientations evenly distributed in the entir@0ldegree range:
0; € {0°,22.5°,45°,67.5°,90°,112.5°,135°,157.5°}
Suggested parameters On the basis of the daisy diagrams shown in Fig. 2, represgittie

Gabor band-pass channels, to have a good coverage of thepatial frequency domain, we

suggest to fixky ando, with respect to a cut-off frequency @ half of the amplitudectpum, i.e.:

ko =m/2 oy =6v2In2/m
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Figure 2: Band-pass frequency channels at 3 different sd¢atedifferent choices of the cut-off

frequency definition and differemnt, /o, ratio.



